lmmm Aenmuncs AND SPACE A
Grant NGR 22-007-068" -

kY

*This document has been approved far: pubhc
rg:le & and sale ;tS"tdmtrlButan is \mlinnted

Office of Naval Research
Contract N00014-67~A-0298-0006

NR - 372 - 012

National Aeronautics and Space Administration

Grant NGR 22-007-068

THE
MATRIX ALGEBRA PROGRAM
A
CONVERSATIONAL LANGUAGE FOR
NUMERICAL MATRIX OPERATIONS -

PART II: REFERENCE MANUAL

By

P. M. Newbold

Technical Report No. 562

This document has been approved for public
release and sale; its distribution is unlimited.

June 1968

The research reported in this document was made possible through
support extended the Division of Engineering and Applied Physics,
Harvard University by the U. S. Army Research Office, the U. S.
Air Force Office of Scientific Research and the U. S. Office of
Naval Research under the Joint Services Electronics Program by
Contracts N00014-67-A-0298-0006, 0005, and 0008 and by the National
Aeronautics and Space Administration under Grant NGR 22-007-068.

Division of Engineering and Applied Physics

Harvard University « Cambridge, Massachusetts

THE

MATRIX ALGEBRA PROGRAM

CONVERSATIONAL LANGUAGE FOR
NUMERICAL MATRIX OPERATIONS -

PART II: REFERENCE MANUAL

By
P. M. Newbold

Division of Engineering and Applied Physics

Harvard University, Cambridge. Massachusetts
June 1968

CONTENTS

INTRODUCTION

NOTATION
Flow Diagrams
Words
Indices and Tables

THE STORAGE TABLES OF MAP

BASIC OPERATION OF THE PROCESSOR

Flow Diagram 1

THE DETAILED PROCESSES OF EXECUTION
Form of User Subroutines
System Subroutines
The Directive Subprocessor
Routines called by the Directive Subprocessor

Flow Diagrams 2-8

THE EXECUTIVE SUBPROCESSOR

Part I: Components not Involving Manipulation
of Matrices

Introduction to Floating-Point Coding

Part II: Components Involving the Manipulation
of Matrices

Flow Diagrams 9-35
COMPATIBILITY
CHANGING THE LIMITS ON STORAGE SPACE
APPENDIX Al
APPENDIX A2
INDEX OF COMMANDS

REFERENCES

Page

[o 2SN N S EEE U

39
64

69
106
137
139
141
143
145

147

1. INTRODUCTION

THIS MANUAL contains detailed information on the structure and
operating principles of the MATRIX ALGEBRA PROGRAM, abbre-
viated MAP. Instructions for the use of the MAP language, and a
description of its facilities are given in the MAP USER'S MANUAL
[1]. It is assumed that the reader is familiar with the USER'S
MANUAL, and also with the SDS 940 Time-Sharing System Manuals.

In particular, since the MAP processor is written exclusively in the
SDS 940 Assembly Language ARPAS, the reader is expected to know
ARPAS thoroughly.

After reading this manual it should be possible for the reader to insert
his own sections of coding into the MAP processor so as to extend the

facilities provided by the language.

2. NOTATION

IN GENERAL, throughout the manual, words and phrases printed in
capitals are to be considered as definitive terms relating to MAP
language, or the MAP processor. Many of the terms used are intro-

duced in the MAP USER'S MANUAL.

Numbers written in the decimal system have no subscripts. Numbers

written in the octal system are subscripted "8" and those in the binary

system, "2,

Flow Diagrams

There are many flow diagrams illustrating the operation of sections
of the MAP processor. Notation in these is largely conventional or

self-explanatory. Points in the flow diagrams labelled thus:

correspond with symbolic locations in the processor possessing the

name substituted for *¥* . Points labelled thus:

>k

are for reference only and have no counterpart in the processor
program. In flow diagrams representing subroutines, the genera-
lised calling sequence is given, together with the contents of the

working registers A, B, and X at the times of entry and exit.

The operation of the MAP processor is based on the cross-
referencing of various storage tables. The remainder of this

section is devoted to their notation in the manual.

Words

A WORD AS DEFINED here is more restricted in sense than is
usual. As far as the MAP processor is concerned, a WORD is a

unit of storage of data or information. Physically, it is either a

location or two adjacent locations in core storage, or the image of
the location(s) on a disk file. A location of storage is a (conven-

tional) word consisting of 24 bits, denoted by:

g 1 2 2t 22 23

L

T
1
1
1
1

A WORD may or may not be part ofa TABLE; if so it is given an
INDEX number, and may be called a TABLE ENTRY. If not the

WORD is given a symbolic name (which is the symbolic location of
the start of the WORD). The contents of the WORD are denoted by

the name of the WORD enclosed in braces.:

EXAMPLE:
' name of location: INDEX
contents of location: {INDEX}

A WORD may be used to store any one of three different kinds of
data. The WORD TYPE is dependent on the kind of information
stored. It is possible for WORDS of mixed TYPE to exist.

TYPE I A TYPE I WORD is a one-location WORD in which
an integer number is stored in the form of octal digits.
Since each octal digit occupies three bits, the WORD
contains a number up to eight octal digits long. These
digits are labelled 01,05 «+cvnn Og - Frequently
these digits may constitute several numbers INDEXING
other TABLES. A TYPE I WORD is denoted by:

o O 0, O

TYPE II A TYPE II WORD is a one-location WORD in which
character codes are stored. Since each octal charac~-
ter code occupies eight bits, the WORD contains three
character codes. These are labelled C;,C,, and C,.
The two left-most bits of an alphanumeric character

code are both zeros. A TYPE II WORD is denoted by:

- c1 CZ Cl

TYPE III A TYPE III WORD is a two-location WORD in which
a floating point decimal number is stored. 1 The first
location of the WORD contains the most significant
part of the mantissa. The second location contains the
least significant part of the mantissa, and the exponent.

These are labelled Fy, F,, and E respectively. The
whole WORD is INDEXED as a single entity. The
WORD is denoted by:

(v}

o

23

24

N

383940 E ¥?

Indices and Tables

A TABLE IS A sequence of WORDS occupying adjacent locations in
core storage, or their images on a disk file. Each WORD of the
TABLE has an INDEX number denoting its position in the TABLE.

" A more detailed explanation of the floating point arithmetic system
of the SDS 940 is to be found in [2], and in the SDS 940 TECHNICAL
MANUAL [3].

-4-

The value of the INDEX may be either positive or negative. The
INDEXING of a TABLE can run either forwards or backwards,
usually starting from zero. A TABLE contains WORDS of one
TYPE only, unless the WORDS themselves are of a mixed TYPE.
A WORD with INDEX number n is denoted by:

~©

In the case of TYPES I & II WORDS the INDEXING of the TABLE
coincides with the natural location indexing of the TABLE locations.
The name of the TABLE is the symbolic label given to the zero‘Ch
location of the TABLE in the processor program (or equivalently,
the WORD with INDEX zero).

In the case of TYPE III WORDS the INDEXING does not coincide
with the natural location indvexiyrig of the TABLE l.ocati‘ons. - The
natural index of the first location of a WORD in the TABLE is ob-
tained by doubling the INDEX number of the WORD. The natural
index of the second location of the WORD is obtained by adding one

to the previous result. The name of the 'TABLE is the symbolic
label giVen to the zerc)‘Ch location of the TABLE in the processor
progré,m (or equivalently, the first location of the WORD with INDEX

zero).

The contents of a WORD of a TABLE are denoted by the name of the
TABLE followed by a comma and the INDEX number of the WORD,

all enclosed in braces.

EXAMPLE:
name of location containing INDEX number: INDEX
contents of location: {INDEX}
INDEXED WORD in ICOM-TABLE : ICOM, {INDEX}
contents of INDEXED WORD: {1coMm, {INDEX}}

-5=

Most of the TABLES are filled with information as MAP language
is being used. TABLES are not always filled starting with INDEX
zero. The actual starting point is called the ORIGIN OF STORAGE
of the TABLE. A TABLE, its INDEXING, and its ORIGIN OF
STORAGE are denoted by:

Q90 99

(name)

(ryPE)

b = - -

Unused parts of TABLES are shown shaded, and contain zeros.

3. THE STORAGE TABLES OF MAP

THE OPERATION of MAP depends on the storage of data and
info.fmation in eight major TABLES. By cross-referencing from
TABLE to TABLE, MAP decides upon the right course of action
at each stage in execution. The TYPE and purpose of each TABLE

is explained in turn.

ICOM-TABLE

H-F g

Cs

== icom - 7
C3 L TYPE Xt - ://A
C, %

The ICOM-TABLE stores the names of all MAP
language COMMANDS. The two left-most bits of

-6

C3 (bits 16 and 17) of each WORD are used to store
the number of ARGUMENTS appropriate to the
COMMAND whose name is stored in that WORD:;

Mz - no ARGUMENTS
¢12 - one ARGUMENT
1¢2 - two ARGUMENTS

PLACE-TABLE

PPY

- . _.-_l_ 3

ok PLACE =1
!

b e o TYPE X -
. I

1= SRl S §)

The PLACE-TABLE stores the locations in the
MAP processor to which execution is directed for
carrying out the operation represented by the
COMMAND yhamed in the corresponding position of
the ICOM-TABLE. {PLACE,i} is the transfer
location for the COMMAND {ICOM, -1-i}.

Since the contents of both the ICOM- and PLACE-TABLES are
permanent, no ORIGINS OF STORAGE are specified for them.
All the following TABLES have specified ORIGINS.

S-TABLE

000 08

!
S t M
!
!
1

r---..!-—-
;

CTAB-TABLE

it

7

The S-TABLE stores the numerical values of the
VARIABLES that the user defines. The TABLE

is divided into contiguous BLOCKS of different
lengths. Each VARIABLE is assigned one BLOCK
of storage, which is of just sufficient length to accom-
modate the values of all the elements of the VARIABLE
(assuming that generally the VARIABLE represents a
matrix). The values of the matrix represented are
stored row by row. The BLOCKS storing the values
of user-defined VARIABLES commence at INDEX
number 1§l , and work forward. The standard output
VARIABLE OO is assigned a BLOCK of 1448 WORDS
starting at the ORIGIN. This BLOCK is of constant
length in spite of the fact that OO can change its row

and column dimensions.

_@
__®

Y

viv!

4 -

T CTAB -
. TYPE XL

The CTAB-TABLE stores the COMMENTS attached
to INDIRECT STATEMENTS of a PROGRAM ’by the
user. The characters of the COMMENTS are stored
in a string, three to a WORD, with the ORIGIN at C,
of the zeroth WORD. This is the only TABLE which
is INDEXED by the number of characters from the
ORIGIN. C, of the zero'™ WORD is the zero'" charac-
ter. All COMMENTS are stored end to end with no

empty character positions.

ISYMB-TABLE

T

i
ey b IsYyMe
TYPE I

H
{
| {
7 ',"l— _+,‘7/ [
G, //ﬁ///,f:f,: | I,
[ORIGIN |

IDIM-TABLE

0,~Op

05~ 0O,

The ISYMB-TABLE stores the VARIABLE names
that the user defines. C1 of each WORD is blank.
The standard output VARIABLE name OO is
permanently stored at the ORIGIN. Usér-deﬁned
names fill up the TABLE from INDEX number -59

forwards.

?

|
P S -

NN\+-®

; . 1DIM

mhe TYPE T

NN

Each WORD in the IDIM-TABLE contains numerical
data associated with the VARIABLE named in the
WORD of the same INDEX in the ISYMB-TABLE.
Each WORD is in three parts, each containing an octal

number.

contain the INDEX of the last WORD in

the BLOCK of storage in the S-TABLE
assigned to the storing of the values of the
corresponding VARIABLE named in the
ISYMB-TABLE. This INDEX will be called
the BLOCK INDEX for the VARIABLE.

9

05 to 06 contain the row dimension of the corre-
sponding VARIABLE named in the
ISYMB-TABLE.

O7 to O8 contain the column dimension of the
corresponding VARIABLE named in the
ISYMB-TABLE.

The numerical data for the standard output VARIABLE
OO is permanently stored at the ORIGIN. Before the
first use of MAP language, OO is a 1§ by 1f matrix.
The INDEX of the last WORD in the BLOCK assigned
to OO in the S-TABLE is 144,. Hence {IDIM, -68} =
144121 28.

To locate the WORD in the S-TABLE containing the
-value of the first element of the VARIABLE whose
name is {ISYMB,i}, MAP unloads O; to O,

{IDIM, i-1} , and adds one to the result. This is the
desired INDEX. To preserve the uniformity of opera-
tion for the standard output VARIABLE, O1 to O4
{IDIM, -61} are set to zero, representing the INDEX
in the S-TABLE of the first WORD of the BLLOCK

assigned to OO, minus one.
The BLOCKS of the S-TABLE are assigned in the

same order as their respective VARIABLE names in
the ISYMB-TABLE.

-10-

INSTR-TABLE

oo N 4

R INSTR “:’

—— V. N

! TYPES I/I !

WA __ 7

{_ORIGN]

The INSTR-TABLE is a TABLE of WORDS of mixed
TYPE storing coded versions of the STATEMENTS
that the user types in. DIRECT STATEMENTS are
always stored in the zeroth WORD. When the user
creates a PROGRAM of INDIRECT STATEMENTS,
the STATEMENTS are stored starting at the ORIGIN
and working forwards. Each STATEMENT is coded
into between two and six octal numbers. Between one

and three of these are stored in the INSTR-TABLE.

O7 to 08 contain the two's complement of the INDEX
of the WORD in the ICOM-TABLE con-
taining the same COMMAND name as the
STATEMENT.

O, to O contain the coded versions of the ARGUMENTS

of the STATEMENT. If the STATEMENT

has no ARGUMENTS, O3 to O, are zero.

If the STATEMENT has one ARGUMENT,

03 to O4 are zero, and 05 to 06 contain

the coded ARGUMENT. If the STATEMENT

has two ARGUMENTS, O3 to O, contain

the coded first ARGUMENT, and 05 to Of

contain the coded second ARGUMENT.

-11-

PTR-TABLE

P99

0,~ Qg
05' O‘

Depending on the type of the ARGUMENT
the codes may be interpreted in two ways.
If the ARGUMENT is LABEL -type, each
code is the value of the LABEL itself
converted to the octal system. If the
ARGUMENT is VARIABLE-type, each
code is the two's complement of the INDEX
of the WORD in the ISYMB-TABLE con-
taining the same VARIABLE name as the
ARGUMENT.

77

. P
i

—$ -
|

T
|
|
-

]

{

[

PTR

TYPE T

Each WORD of the PTR-TABLE contains the remaining
two code numbers for the STATEMENT partially coded
into the WORD of the same INDEX in the INSTR-TABLE.

O5 to 06

O, to O

contain zero if the STATEMENT is DIRECT,
or the LABEL of the STATEMENT con-
verted to the octal system if it is INDIRECT.

contain the number of ARGUMENTS of the
STATEMENT if the ARGUMENTS are
VARIABLE-type, or zero if they are LABEL-
type. This number is called the CHECKNUMBER
of the STATEMENT.

-12-

O, to O, contain the INDEX in the CTAB-TABLE
of the first character code of the COMMENT
attached to the STATEMENT if the latter is
INDIRECT and a COMMENT for it exists,

or zero otherwise.

In the next section an overall outline of the operation of the MAP pro-

cessor is given.

A. BASIC OPERATION OF THE PROCESSOR

THE BASIC OPERATION of MAP depends on the coding of DIRECT
STATEMENTS and the execution of sequences of DIRECT or INDIRECT
STATEMENTS. All operations, including for example, the creation of
a VARIABLE LIST or a PROGRAM are carried out as phases in the
execution of STATEMENTS.

The section of the MAP processor devoted to these fundamental

operations is called the DIRECTIVE SUBPROCESSOR. It consists
of a loop of complex form which is iterated every time one STATE-
MENT is processed. The DIRECTIVE SUBPROCESSOR is shown

in Flow Diagram 1. Each phase of its loop will be examined in turn.

On first entry into the MAP processor, the title of the processor is
printed out (a). Initialization of the processor follows (b). This
process will be discussed later. Next the processor sets an INDEX
counter TNDEX!'to zero and asks the user to type in a DIRECT
STATEMENT (d). The STATEMENT is input, coded, and stored

as {INSTR, f#} and {PTR, ff} (e). Details of the coding process itself
are given later; the contents of the INSTR- and PTR-TABLES on

completion of the process are described in the previous section.

-13-

If the coding process is unsuccessful because of a user error (f),
an error message is printed out (g), and the processor asks for a
new DIRECT STATEMENT (d).

If the coding process is successful, the MAP processor moves on
to the next phase in execution (h). At this point {INDEX} =f. The
processor therefore unloads {INSTR,ﬁ‘} and {PTR,¢}. The con-

tents give the following information:

INSTR-TABLE

(I) The INDEX in the ICOM-TABLE of the COMMAND
of the coded STATEMENT; and either

(II) the octal equivalents of the LABEL-type ARGUMENTS
of the coded STATEMENT; or

(I1I) the INDICES in the ISYMB-TABLE of the names of
the VARIABLE-type ARGUMENTS of the coded
STATEMENT.

PTR-TABLE
(IV) The CHECKNUMBER of the STATEMENT.

Knowing (I) the MAP processor obtains the location in the processor
program to which control is to be transferred for execution of the
COMMAND, from the corresponding entry of the PLACE-TABLE
(see the previous section). {INSTR, g} cannot have been an empty
WORD, so that MAP proceeds to the next phase (i), effecting the
transfer of control and executing the coded DIRECT STATEMENT
(j)- This phase utilizes (II) through (IV) above.

On return, if execution was deleted because of an irremediable error

(k), an error message is printed (g) and a new DIRECT STATEMENT

is asked for.

-14-

If execution is successful, {INDEX} is incremented by one (£).

Two possibilities now arise. If the STATEMENT just executed

was any STATEMENT apart from a DIRECT 'BRANCH!
STATEMENT, then at (m) {INDEX} > ﬂ MAP thus chooses the

'NO' branch, returning to (d) to ask for a new DIRECT STATEMENT.

On the other hand, if the STATEMENT just executed was a DIRECT
'BRANCH' STATEMENT (the user presumably wishing to cause
execution of a stored PROGRAM), then at (m) {INDEX} < f. The
actual value will be the negative of the INDEX of the WORD in the
PTR-TABLE containing the coded LABEL which appeared as the
ARGUMENT of the DIRECT 'BRANCH' STATEMENT. The 'YES!'
branch is taken at (m), and unloading of {INSTR, {INDEX}} and
{PTR, {INDEX}} follows. '

Thus execution of the stored PROGRAM starts with execution of the
INDIRECT STATEMENT specified by the user in the DIRECT
'BRANCH' STATEMENT. This time during the unloading process
(h), because the STATEMENT is INDIRECT, in addition to (I)

through (IV) above, the following information is given:

PTR-TABLE
(V) The INDEX in the CTAB-TABLE of the
COMMENT attached to the INDIRECT
STATEMENT, if present; and
(VI) the octal equivalent of the LABEL of the
INDIRECT STATEMENT.

If the STATEMENT has a COMMENT, it is printed out, and MAP
then proceeds as before by obtaining the transfer location for the
currently processed STATEMENT from the PLACE-TABLE. At
this stage also an empty WORD cannot be present (i), so MAP
executes the INDIRECT STATEMENT (j).

-15-

The loop (h)(i)(j)(k)(£)(m) is cycled repeatedly, executing the INDIRECT
STATEMENTS of the PROGRAM in their LOGICAL SEQUENCE. In
the absence of any flow-changing STATEMENTS in the PROGRAM,
{INDEX} increase by one at each iteration round the loop. Iteration

ceases when one of the following four events takes place.

(I) The MAP processor detects at (i) an empty WORD in the INSTR-
TABLE: it considers the PROGRAM to have been
completely executed normally, and returns to (d) to
ask for a new DIRECT STATEMENT.

(II) The MAP processor detects at (m) that {INDEX} are no longer
negative. This can only happen if execution of a
maximal length PROGRAM has just been completed
normally. Again MAP returns to (d) to ask for a
new DIRECT STATEMENT.

(III) The MAP processor detects at (k) an EXECUTION ERROR
and deletes execution. An error message is given
(g) and MAP returns to (d) to ask for a new DIRECT
STATEMENT.

(IV) The user presses the 'ESCAPE' key. A software interruptZ is
activated, and MAP is directed to the recovery routine

(c) and thence to re-initialize MAP (b).

This completes the discussion of the DIRECTIVE SUBPROCESSOR of
MAP.

2. The software interrupt system of the SDS 940 is described on p. 8

of the SDS 940 TECHNICAL MANUAL [3].

-16-

Escars’
<‘r- recovery
v troutine
(b) initialize
MAP
o~ 1
‘/ ~—~—

C START)
i

print TITLE

set findExE = @
ask for new
DIRECT smrsmelvr]

v

input and, code
STATEMENT

@Djxg
5
(m)

YES'

NO'

N —
J

\17'NO'

unload. WORDS of INSTR
& PR indexed by JINDEX]
output COMMENT if angy
oftauiv transter location
for execution, of COMMAND

increment
Tinoex]

by one

print
ERROR.
MESSAGE

Flow Diagram 1. The DIRECTIVE SUBPROCESSOR.

b. THE DETAILED PROCESSES OF EXECUTION

THIS SECTION comprises a set of notes designed to supplement
the information given in the Flow Diagrams 2 -8. The reader will
also find it useful to refer to a listing of the MAP processor, and
to the MAP USER'S MANUAL [1].

There are some general properties of the structure of the processor

program that it is useful to bear in mind.

Form of User Subroutines

SUBROUTINES ARE constructed in either of two different ways. If
the subroutine has need of only one transmitted parameter apart
from the contents of the working registers, then the POP form is
employed. 3 The method of call is such that the POP may be used

exactly like a machine instruction.

For subroutines requiring more transmitted parameters, or of
relatively high complexity, the BRM - BRR type of linkage is em~-
ployed. 4 A subroutine of this type will from now on be called a
BRM for brevity.

" See pages 17-18 of the SDS 940 COMPUTER REFERENCE
MANUAL [4], and page 13 of the SDS 940 TAP MANUAL [5].

See pages 25-26 of the SDS 940 COMPUTER REFERENCE
MANUAL [4].

-18-

System Subroutines -

There are a large number of system subroutines available on the
SDS 940. These are intended to carry out basic operations often
required by an ARPAS programmer, (such as input/output opera-
tions) to make programming a simpler process. Again there are

two forms:

(I) the SYSPOP which is exactly like a POP,

except that it is defined within the system;

(II) the BRS, which has a single call instruction,
and uses only the working registers to trans-

mit parameters.

For convenience, a list of the BRS's and SYSPOPS used in the MAP

processor is given in Appendix Al.

The Directive Subprocessor

THE OPERATION OF the DIRECTIVE SUBPROCESSOR of MAP
has already been explained in general terms in the preceding section.
More details are given here, and the explanation proceeds more from
a programming standpoint than before. The user subroutines em-

ployed will be described in following subsections of the manual.

The flowchart of the SUBPROCESSOR is shown again in Flow Diagram 2.

On first entry into the MAP processor at the point ,
message MS1 is printed out:7

5)6. See the SDS 940 TECHNICAL MANUAL [3].

7. A list of all the messages used is given in Appendix A2.
-19-

MATRIX MANIPULATOR (11¢-3 MAY 1968

The 'ESCAPE' interrupt is armed and as a precautionary measure,
a BRS closing all disk files is executed. 8 The three characters
"<t Mspace", and "bell" are output to the teletype, and {INDEX}

set to zero.

The BRM 'INPUT!' is next executed: this handles input of a DIRECT

STATEMENT. There are two exits from the BRM. If the user types

a mistake the 'BAD' exit is taken, and execution is directed to point
(A1) . Otherwise the 'GOOD' exit is taken. At this point

{INSTR, #} and {PTR, @} constitute the coded STATEMENT. At

point the MAP processor enters a loop which is cycled

when either DIRECT or INDIRECT STATEMENTS are to be executed.

The WORDS in the INSTR- and PTR-TABLES containing the coded

STATEMENT to be executed are INDEXED by {INDEX}. {INDEX} = §#

for DIRECT STATEMENTS.

First, the CHECKNUMBER O.0O; {PTR,{INDEX}} is unloaded, and
set into a temporary storage location T+3. Next the BRM 'WDS! is
executed. This prints the COMMENT attached to the STATEMENT,

if there is one, on the teletype.

A test is now carried out to determine whether {INSTR, {INDEX}} = ¢
A zero value implies that the MAP processor has already executed
all the INDIRECT STA'IEMENTS of a PROGRAM in their LOGICAL
SEQUENCE, and no STA.TEMENT exists in the WORD tested. If the
contents of the WORD are zero, execution returns to point (a1g)
If {INSTR, {INDEX}} # # the processor unloads and stores the rest of
the data for the current STATEMENT in the following way:

8. Files are identified by a logical index number. f# and 1 stand for
teletype input or output, and hence no disk files exist with these
numbers, and closure does not occur.

-20-

{1} set to 0,0, {INSTR, {INDEX} }
{T+1} setto 0,0, {INSTR,{INDEX}}

{T+2} setto 0.0, {INSTR, {INDEX}}

After unloading, {T}, {T+l} are the coded ARGUMENTS of the
STATEMENT, and {T+2} are the coded COMMAND.

Control of execution is now transferred to that section of the pro-
cessor executing the specified COMMAND. The transfer location

is given by {PLACE, {T+2}-1}. The name of the specified COMMAND
is given by {ICOM, -{T+2}}. The vector of temporary storage
locations T, T+l1, T+2, T+3 t‘r"ansmits identifying information

during the transfer.

Execution of the STATEMENT now follows. Description of this is
deferred until later sectionsv. If an error is detected during execu-
tion {ERR} are set to some non-zero value identifying the ERROR
MESSAGE. Control of execution is transferred to point

on combpletion.

The MAP processor now makes several tests. The first test
determines whether {ERR} = . First suppose that the value is
non-zero, implying that an error arose during the execution of the
STATEMENT. The processor next makes a test determining
whether {INDEX} < f. If this is true, then the STATEMENT in
which the error occurred was INDIRECT : the processor there-
fore outputs to the teletype the message MS6:

STOP IN STATEMENT

The LABEL of the incorrectljr executed STATEMENT is unloaded
from 0,0, {PTR,{INDEX}}, and printed by the BRM 'PIC'. Thus
the user is provided with information on where execution failed in
his PROGRAM.

-21-

For all values of {INDEX} execution is now directed to the ERROR
MESSAGE subroutine BRM 'ER1'. The ERROR MESSAGE cor-
responding to the value of {ERR} is printed on the teletype, and
{ERR} reset to zero. Execution is then directed back to the point

(A1)

Alternately, suppose that {ERR} = ff, implying that no error occurred;
then the processor increments {INDEX} by one. A test on {INDEX}
is next carried out. If {INDEX} < Qf, then there may still be more
INDIRECT STATEMENTS to be executed, and execution is directed

to the point . Otherwise execution is directed to the point

(alg)

The condition {INDEX} = # could have arisen in two ways. If
{INDEX} = # this implies that the processor has just successfully
completed execution of a PROGRAM which fully occupies the INSTR~-
and PTR-TABLES. If {INDEX} > # this implies that the STATEMENT
just executed was DIRECT (but not a flow-changing STATEMENT).

This completes the description of the actual loop itself. One further
" point remains to be explained in connection with Flow Diagram 2. If
at any point the user presses the '"ESCAPE' key the presence of the
interrupt mentioned earlier overrides the normal action of the MAP
processor, and execution is directed to the BRM 'ESC'. This
routine outputs to the teletype a carriage return and line feed, and

directs the processor to restart execution of the basic loop at point

:

In the following subsections the operation of the subroutines involved
in the DIRECTIVE SUBPROCESSOR is explained.

22~

Routines called by the Directive Subprocessor

SEVERAL SUBROUTINES, all of the BRM type are described in

this subsection.
BRM 'WDS' (Flow Diagram 3.)

The BRM 'WDS' is a routine for printing out via

the teletype COMMENTS attached to INDIRECT
STATEMENTS. On entry {X} is the value of the
INDEX in the PTR-TABLE of the WORD con-
taining the starting INDEX of the required COMMENT
in the CTAB-TABLE. {A} and {B} are garbage.g

The calling sequence is:

BRM WDS
[return location]

The operation of the routine is as follows. First
Ol--O4 {PTR,{X}} are unloaded, giving the INDEX
of the zeroth character of the desired COMMENT.
This INDEX number is tested, and if found to be
zero, implying that no COMMENT exists for the
STATEMENT coded into the WORD' in the PTR-
TABLE examined, then the exit from the BRM is
taken directly. B

If the INDEX number is non-zero, 'then_ a COMMENT
exists. The absolute character location of the zeroth

character is calculated, and the characters are then

9 The working registers of the SDS 940 are called the A, B, and

X registers. X is the index register.

-23-

retrieved from the CTAB-TABLE and output to the
teletype one by one until a carriage return character

is encountered. 10

A line feed character is then output to the teletype,
and the exit from the BRM taken. At exit {X} are
the same as at entry, while {A} and {B} are garbage.

The BRM 'PIC!' is a routine which converts an octal
number to its character code representation, and
prints the result via the teletype. On entry {A} is
the two-digit octal number to be converted to its
character codes and printed. {B} are garbage, and
{X} are unaffected by the BRM. The calling sequence

BRM PIC
[return location]

The operation of the routine is as follows. First {A}
8 The quotient and the remainder
are then the left and right digits respectively of the
original number. In turn, these are each converted

to their character code form and output to the teletype.

The exit from the BRM is then taken.

At exit {A} and {B} are garbage.

BRM (Flow Diagram 4.)
is:
are divided by 12
lo.

The retrieval of characters from a TABLE or 'string' is one of
the processes for which special provision is made in the SDS 940

For further information on the 'string processing' system,

see the STRING PROCESSING REFERENCE MANUAL [6], and
the SDS 940 TECHNICAL MANUAL [3].

-24-

BRM 'ER1!' (Flow Diagram 5.)

The BRM 'ERI1' is a routine which prints out ERROR
MESSAGES, and controls the return of execution to a
specified location in the processor. At entry {A} ,
{B} and {X} are garbage. {ERR} constitute an
ERROR MESSAGE reference number. The calling

sequence is:

BRM ERI
ZRO [address of return location]

The operation of the routine is as follows. First the
location of the ERROR MESSAGE corresponding to
the value of {ERR} is calculated. The message is
printed via the teletype using a BRS 34. {ERR} are
reset to zero, énd the return location obtained.
Lastly the exit from the BRM is taken. At exit {A} ,
{B} and {X} are garbage.

BRM 'INPUT' (Flow Diagram 6.)

The BRM 'INPUT' is a routine for executing the input

of STATEMENTS from the teletype, for checking their
acceptability, and for coding them into the INSTR- and
PTR-TABLES. It handles the input of DIRECT
STATEMENTS, and all parts of INDIRECT STATEMENTS
following the colon. On entry {A} y {B} and {xX} are

garbage. The calling sequence is:

-25-

BRM INPUT

[GOOD return location]

ZRO [address of BAD return location]

ZRO [address of location containing INDEX
number in INSTR- and PTR- -TABLES]

The operation of the routine is as follows. On entry
the address of the BAD return location is stored in
case of its use by the BRM 'ER1'. The contents

of two locations used as ARGUMENT and
CHECKNUMBER counters are initialized to zero.
{X} are set equal to the value of the INDEX of the
WORDS in the INSTR- and PTR-TABLES in which
the coded STATEMENT is to be put. {INSTR,{X}}

are set equal to zero.

Next, the processor checks to see if an error has
already occurred. If this is true, so that {ERR} # #,
the 'NO' branch is taken to point LI
{ERR} = ¢ the 'YWES!' branch is taken to point IN1
This point is the start of a loop which inputs charac-
ters three at a time from the teletype into one WORD,
and processes them as an entity. The operation of
this loop is now examined. First, the three charac~
ters of the STATEMENT are input from the teletype
into one WORD. If the third character is a comma,
then this WORD contains an ARGUMENT ; if not, a
COMMAND. |

Suppose first that the WORD contains an ARGUMENT
of the STATEMENT. If the ARGUMENT counter has
the value 2, showing that two ARGUMENTS have
already been accepted, an error condition arises, and
a 'YES! branch is taken to the point IN3 .

-26-

Otherwise the 'NO' branch is taken, and the BRM 'IPC!
is next executed. This routine tries to code the
ARGUMENT as if it were LABEL-type. If the coding

is successful, execution is directed to point .

If the coding is unsuccessful either the ARGUMENT

‘is VARIABLE-type, or an error in input has taken

place.

The BRM 'LOOK!' is executed, trying to locate the
ARGUMENT in the ISYMB-TABLE. (If the ARGUMENT
of the STATEMENT is VARIABLE-type and valid, it
will have already been stored in the ISYMB-TABLE by
a '"WARIABLES' COMMAND). If no such ARGUMENT
exists, it i’s certain that an error has occurred. {ERR}
are set equal to 2, denoting an ERROR MESSAGE
‘reference number, and execution proceeds to point
H~IN4). If the ARGUMENT is found in the ISYMB-
TABLE, the two's complement of its INDEX in the
TABLE is kept; the CHECKNUMBER is incremented

by one, and execution proceeds to point IN2

- At this point the coded ARGUMENT is placed in posi-
tion in INSTR,{X}. The ARGUMENT counter is
incremented by one, and execution is directed back

to point for processing the next three charac-
ters of the STATEMENT.

Suppose now that when the characters are processed,
they constitute the COMMAND of the STATEMENT.

The value of the ARGUMENT counter is merged into
bits 16 and 17 of the WORD containing the COMMAND.
A BRM 'LOOK!' is executed looking up the COMMAND .
in the ICOM-TABLE. If it is found, the two's comple-
ment of its INDEX in the TABLE is loaded in position

-27-

in INSTR,{X}. The CHECKNUMBER is loaded
into position in PTR,{X} . Execution then proceeds
to point IN4

If no such COMMAND is found in the ICOM~-TABLE,
execution is directed to point where
{ERR} are set equal to 9. Execution then proceeds

to point .

At this point, characters are input one at a time and
thrown away, until the first appearance of a carriage
return character. If the ARGUMENTS and the
COMMAND were successfully coded, the characters
input will be those of the COMMAND after the first
three. If an error arose at some point, the charac-
ters input will in addition include those constituting

all the STATEMENT after the occurrence of the error.

On the appearance of a carriage return, a line feed
character is output to the teletype. An error check
is made, and if none occurred then the 'GOOD' exit
from the BRM is taken. If an error did occur, a
BRM 'ER1' is executed to print out an ERROR
MESSAGE. The 'BAD!' exit is then taken from the
BRM 'INPUT! to the point specified at the start of

the routine.
At either exit {A}, {B} and {X} are garbage.

The two following routines are called during the execution of the
BRM 'INPUT!'.

-28_

BRM

'LOOK!!

(Flow Diagram 7.)

The BRM 'LOOK!' is a routine for examining the
WORDS or parts of WORDS in a TABLE for a
match with the WORD or part of WORD tested.

The BRM is used in many parts of the processor

to locate the names of VARIABLES, COMMANDS,
and so on. At entry {A} is the WORD to be matched
with a TABLE entry. {B} and {X} are garbage.

The calling sequence is:

BRM LOOK

ZRO [mask]

ZRO [INDEX of TABLE origin]
ZRO [name of TABLE]

[BAD return location]

[GOOD return location]

The operation of the routine is as follows. From

the arguments of the BRM are obtained the absolute
location of the zero'? WORD of the TABLE, the
mask through which the match is to be taken, and

the INDEX of the ORIGIN of the TABLE. Execution
is then at point LK1

The WORD in the A register is now compared with
each WORD in the specified TABLE appropriately
masked, starting at the ORIGIN, and stopping at the
first match or after the zeroth WORD has been reached.
If a match occurred, then the INDEX of the WORD

-where the match occurred is retained, and the 'GOOD!

exit from the BRM taken. If no match occurred, the
'BAD! exit from the BRM is taken.

-29-

At a 'BAD!' exit {A} are as at entry; and {B} and
{X} are garbage. Ata 'GOOD! exit {A} is the
INDEX of the matched WORD; and {B} and {X}

are garbage.
BRM 'IPC' (Flow Diagram 8.)

The BRM 'IPC' is a routine which tests an
ARGUMENT of a STATEMENT, and if it is LABEL-
type, converts the character codes of the ARGUMENT
to a two-digit octal number. At entry {A}, {B} and
{X} are garbage. {T} constitute the ARGUMENT to

be tested and converted. The calling sequence is:

BRM IPC
[EXIT1 return location]
[EXIT2 return location]

The operation of the routine is as follows. First a
location storing the conversion result is initialized

to zero. Execution then moves to the start of a loop
at point (1P1). The current result is multiplied
by 128. The next leftmost character of the WORD

to be converted is selected, and converted to an octal
number. If the number is between § and 11, then the
character converted was numeric, and the octal num-
ber is added into the result. If the number is outside
the above range, then the character code was non-
numeric and the ARGUMENT was not LABEL-~type.
EXIT1 is taken from the BRM.

If conversion continues another test is next made_. If

fewer than two characters have been processed,

~30~-

execution returns to point IP1 and the loop
is recycled. If two characters have been processed,
the final result has been obtained. If its value is
between 1 and 63 inclusive, it constitutes a valid
LABEL. EXITZ is taken from the BRM. If the
value is outside this range, the LABEL is invalid,
and EXIT! is taken from the BRM.

At EXIT1 {A}, {B} and {X} are garbage; at
EXIT2 {A} constitutes the coded LABEL-type
ARGUMENT, and {B} and {X} are garbage.

This completes the detailed discussion of the opefation of the DIRECTIVE
SUBPROCESSOR. In the following sections the operation of the
EXECUTIVE SUBPROCESSOR components will be discussed. These
componenté correspond one for one with the COMMANDS available

in MAP language, and carry out their execution.

-31-

entry uto MAP

‘1/ here

BRM ESC ome here affer

outpur Corriage WV pressing kscarm’ key
refurx, end Uine Q—"——@

feed charaaters

to telehype
‘4/ ;ncutu:}m ccmnb
close all
ause piles
p -
e s ion!
4o tele- cssage
KL MS6
to telalype
set {inDEXE AX <7
= unload ABEL
increment: of STEMENT
Sinpex} by arte Form.
BRM INPUT ‘ 050, § PTX, §INDEX}
input BT STHTE-
o 5T EB—
(GOODTBAD Q RV P
— * . / orvert and
ar wt hABEL
<} A YES fMNDEXZ < © ?:Pfelelype
$
Set §7+3% =
cufmmszn. RM ERT
outy
I Leoe 33— <7 ctton, ezl
‘u/a'ucea(b_‘l gzke‘}
BRM _WDS
Oulput OMMENT to ZB
telelype if any
: &o to execute
set 813 and §Te13 set {m2f o L :Hmsfwﬁm a” " commana
+to ARGUMENTS D COMMAND scation
0,04 fmssTR, fvpEX]E 0,0, TnsTR, finpE3 irdce, Fread-3 | -
o,o‘fmsm,t‘wux}g

Flow Diagram 2. Detailed flowchart of DIRECTIVE SUBPROCESSOR.

C - WDS)
)

unload flom
0,-0,{rm, {x3§
startuig INDEX

wo CTRB TASLE CALL SEQUENCE:

BRM WDS
[return location]

AT ,'EN,TRY:
{A},{B} garbage

X} wvalue of INDEX in
XIZ PTR - TABLE
oufur'dmaw

1 strnig, endeng AT EXIT:
7 af ficst carriage
\ et shorede {A},1B} garbage
(1] ' {xt unchanged
Joutput lne foed
o Glbype
—

(_ExIT)

Flow Diagram 3. Flowchart of BRM 'WDS' for printing the
COMMENT attached to an INDIRECT

STATEMENT.

Lpnc)
y

dinde octal
wmber 6y 124

{7 CALL SEQUENCE:
BRM PIC
Convert quotient 4
Somuert quet [return location]
code and uk
to telg;::etp
p—— AT ENTRY:

Temodder o {A} number for conversion
and cutput {X¢ not used
{B} garbage

(EX‘IT) AT EXIT:

{A1,1B} garbage

Flow Diagram 4. Flowchart of BRM 'PIC' for conversion

and output of an octal number.

C ER1)

from FERR}

colewlate Location

of daswred ERROR
MESSAGE

CALL SEQUENCE:

<7 BRM ER1
oufput MESSAGE ZRO [address of return
‘o teletype . lOCd‘flOﬂ]
ge€é return
{ocation
AT ENTRY:

Cexr D IALBLIXE garbage

{ERR} ERROR MESSAGE
reference humber

AT EXIT:

{A},1B},iX} garbage
{ERR} zero

Flow Diagram 5. Flowchart of BRM ‘ER1" for printing out
’ ERROR MESSAGES. ’

Cwr D

stere &rror TERum.

CALL SEQUENCE: (ocaction. for BRM &Ri AT ENTRY:
iA3,1B3,{X} garbage
BRM INPUT Set ARGUMENT amd
ESOOD return locat iOI'ﬂ CHRCKNUMBER,
ZRO [addr.BAD return loch] |owaters % zeo | a1 EXIT:
ZRO Edddr. INDE X |Ocafi0n] v {A},{B},QX} garbagc
set ixt fo dasdred
INDEX of words da
[

-
~J
MW
ARGOMENT
Counter
add oded. merge volue of
ARGUMENT Ko MGOMENT co.
{uva-ne,lxg; ; Lofe vito bits 16-:;‘
shife & octal digits of WORD
i o'
V) BRM_LOOK
look COMMAND
i 1COM-TABALE
BRM__1PC BAD _[GOOD
Check and comvert
KABKL ~Aype ARGUMENT
EXIT LR o, cadad, COMMAND
u——Q—J v 5ot o {INSTR,{x3% &
BRM LOOK im} =9 CHECKNUMBER to
Z& fook "f ARGUMENT imn{x“
]
[
increment \ ;
NulBER il}ou-c characlers and
discardt tif fiis€
— [— ca/n'aj’e rofum .Waears
L
BRM_ _ER1
% pe
KERROR MNRSSA
eferenced by Serny

(BAD EXIT) (GOOD EXIT)

Flow Diagram 6 . Flowchart of BRM ‘INPUT' for input and
coding of a STATEMENT.

(LOOK)
i

geot absolute
Goeation of CALL SEQUENCE:
zero™® woRD
of TRBLE
BRM LOOK
(7 ZRO [mask]
gt mask and ZRO [INDEX of TABLE ORIGIN
o ondw ZRO [name of TABLE]
[BAD return location]
$—(IRD [G.OOD return location]

V.

are WORD wik each

TROLE ent'y , masked.,
storting' ot ORIGIN and.

Stopping® b first match,
or wnd of TRBLK

INDEX A

o ((BAD EXIT)

matclu'n.g WoRD

AT ENTRY:

(GOOD EXIT)

{A} WORD to be matched
{B3,iX} garbage

AT EXIT:

{A} INDEX of matching WORD,
if one exists
{B},iX} garbage

Flow Diagram 7. Flowchart of BRM'LOOK for matching 4

WORD with a TABLE entry.

arD
v

set result stove
= %

g———@

multiply current
result by 12¢

Select next lefemost
character of WORD
to be converted

N

conuert from
character code to
octal dt'g'[t

wks
character

CALL SEQUENCE:

BRM IPC
[BAD return location]
L600D return location]

AT ENTRY:

{A%{BLIX} garbage
{T} word to be converted

AT EXIT:

{A} converted word or
garbage
{B},iX3 garbage

rumeric
2

Cexitg) exiT1)

Flow Diagram 8. Flowchart of BRM 'IPC' for testing and
converting a LABEL-type ARGUMENT to
ah octal number.

6. THE EXECUTIVE SUBPROCESSOR

THE EXECUTIVE SUBPROCESSOR comprises those components
of the MAP processor dealing with the execution of coded
STATEMENTS. Control of entry into any of the components is

held by the DIRECTIVE SUBPROCESSOR whose operation has
been described in the previous sections of this manual. Each com-
ponent of the EXECUTIVE SUBPROCESSOR corresponds to a MAP
language COMMAND . There exist groups of/components which are
almost entirely independent of each other, except in so far as they

may call the same subroutines.

Discussion of the operation of the component groups is divided into
two parts. Part I concerns the operation of those components not
involving the manipulation of MAP matrices and scalars. PartII
concerns all those components which do involve such manipulation.
This classification is unrelated to any classification of COMMANDS
to be found in the USER'S MANUAL, and is purely for descriptive

convenience.

Part I: Components not Involving Manipulatiun of Matrices

EACH INDEPENDENT COMPONENT or component group will be
described in turn, followed by the subroutines which they call.
Each description will be titled with the COMMAND name or names.

Flowcharts of the components will be found in Flow Diagrams 9-21.
VARiables (Flow Diagram 9.)
'VARiables!' is a zero-rARGUMENT COMMAND for

adding new VARIABLE names to the LIST of
VARIABLES. At entry {LIST} constitute the INDEX

39

of the WORDS in the ISYMB- and IDIM-TABLES
last filled. On first use of a 'VARiables'! COMMAND,
{LIST} = -64.

The operation of the COMMAND is as follows.
First a check is made on {LIST} to see if the
ISYMB- and IDIM-TABLES have already been com-
pletely filled, implied by {LIST} = -1.

If so, a '"NO! branch is taken; the B register is
loaded with an ERROR MESSAGE reference num-
ber, and execution directed to point —-—E}] in the
'APPend' component for completion of the error

return.

If the TABLES are still only partially filled, the
"YES' branch is taken, and a BRM 'STAR!' executed.
This routine inputs a character from the teletype.

If it is an asterisk denoting that the use of the
"'VARiables! COMMAND has been completed, exe-
cution is returned to point -——-EL_-[in the DIRECTIVE
SUBPROCESSOR via EXIT] from the BRM. If the
character is not an asterisk it is assumed that the
user is typing another VARIABLE LIST entry.

Two more characters are input to complete a whole

WORD, and EXITZ2 is taken from the BRM.

The processor now has in its possession the first
three characters of the new VARIABLE LIST entry
being typed in by the user. The first two characters
should be the name of the new VARIABLE, and the
last character either a carriage return if the

VARIABLE is scalar, or "=" if it is a matrix.

-40-

Next the VARIABLE name is checked to see if it
starts with an alphabetic character. If not the
VARIABLE name is illegal and the processor sets
{ERR} = 5, denoting an ERROR MESSAGE
reference number. If the name is legal, it and

its terminating character are separately stored.

The processor now executes a BRM 'LOOK!' to

find out if a VARIABLE of the same name has

previously been stored in the ISYMB-TABLE .

If the result is positive, the processor sets

{ERR} = 5. If the resultis negative, MAP ac-

cepts the new VARIABLE name. {ISYMB,{LIST}+1}
- are set equal to the VARIABLE name.

Now, whether or not an error has been found, the
BRM 'DIMS! is entered to input the dimensions of
the new VARIABLE. If an irremediable error
occurs during execution of the BRM, or occurred
before entry, the 'BAD' exit is taken from the
BRM, and execution is directed to point ——[9__[in
‘the 'APPend' component.

If no error occurs {IDIM, {LIST}+1} are appro-
priately filled, and the 'GOOD' exit taken from the
BRM. This completes the input and coding of one
entry in the VARIABLE LIST. Because the
"'"VARiable! COMMAND deals with multiple entries,
execution is now directed back to point VAR

ready for a new entry to be accepted.
The section of coding whose operation has just been described calls

three BRM!'S. BRM 'LLOOK! has been described in Section 5. A

description of the other two now follows.

-41-

BRM 'STAR' (Flow Diagram 1f.)

The BRM 'STAR' is a routine for input and checking
of the first WORD of an entry typed in EDIT MODE

by a MAP user. The call sequence is as follows:

BRM STAR
[EXIT1 return location]
[EXIT2 return location]

.

At entry the A, B, and X registers contain
garbage. At EXIT1 they contain garbage again.
At EXIT2 {A} constitute the third character
input; {X} =@ ; {B} and {T} are the three

characters input.

The operation of the routine is as follows. On
entry a "bell" is output to the teletype to inform
the user that the processor is waiting for input.
The first character is input. If it is an asterisk,
the contents of the WORDS of the INSTR~- and
PTR-TABLES INDEXED by {INSTRX} are set
to zero; a carriage return and line feed are output

to the teletype, and EXIT! taken from the BRM.

If the first character input is not an asterisk, the
remaining two characters required to fill up a
WORD are input. The complete WORD and the
last, terminating character are separately stored
and EXITZ2 taken from the BRM..

-42-

BRM 'DIMS' (Flow Diagram 11.)

The BRM 'DIMS' is a routine for the 1nput and

coding of the dlmensmns of a VARIABLE name,
~and the calculation of the BLOCK INDEX of the

BLOCK of storage a551gned to it in the S-TABLE .

Its call sequence is as follows

BRM DIMS '
" [BAD returnlocation]
[GOOD return location]

At entry the A register contains the terminating

~character following the VARIABLE name, while
{B} and {X} are garbage. At exit {A} and {X}
are garbage, and {B} are either garbage, or an
ERROR MESSAGE reference number.

The operation of the routine is as follows. First
" the terminating character is stored in a temporary
location T+2. Then, if an error has already occurred
prior to entry into the ‘routine, a 'NO! branch is taken
“to point P—~(DIM2). Otherwise, a test on the terminating
c‘hayracyter is next madé.v Correctly this may either be

"= or a carriage return. If it is not "=" execution

is directed to point

If the character is "=", numbers representing the
row and column dimensions of the VARIABLE are
iniaﬁt by the user. The tefminatirig‘tharacter of the
flI‘St number should be a comma, and of the second
a carrlage return. If e1ther of these is incorrect,

'the processor sets {ERR}' = 9 and branches to point

. If either of the two numbers is greater

_43..

than ten the processor sets {ERR} = 6 and branches
to point (p~(DIM2). At the end of this process if
no error hé,s occufred temporary storage locations
T+l and T contam the row and column dimensions
of the VARIABLE respectively, and execution has
reached point .

Considering now execution from point DIM1), the
terminating character is either a carriage return or
is incorrect. If it is the latter a 'NO!' branch is
taken; the processor sets {ERR} = 9 and branches
to point DIMZ2). If it is the former, then the
VARIABLE is a scalar. The contents of both tempo-
rary storage locations T and T+l are therefore set

equal to one, and execution again arrives at point

.

At this stage in the discussion execution has arrived
either at point , or, if an error arose, at
point (pDIM2). Continuing from the latter point,
all further characters of the LIST entry after the
occurrence of the error are input and discarded one
by one until the appearance of a carriage return. A
line feed is output to the teletype. A BRM 'ER1'

is executed printing out the ERROR MESSAGE
referenced by {ERR} and a branch to point

made.

Continuing now the discussion of execution from point
- the row and co‘lumn dimensions are stored
in IDIM, {LIST}+1. The BLOCK INDEX for the
previous VARIABLE, given by O,-0,{IDIM, {LIST}}
is obtained, and the product of the row and column
dimensions added to it. The result is the BLOCK

-44-

INDEX in the S-TABLE for the current VARIABLE .
If its value shows that use of the VARIABLE would
lead to overfilling of the S-TABLEY, a 'YES' branch
is taken. The processor sets {B} = 4 representing
an ERROR MESSAGE reference number and
branches to point .

If no overfi,lling is indicated {ENDS+1} and

, 01-04{IDIM, {LIST}+1} are set eq\ial to the new
BLOCK INDEX. A line feed is output to the tele-
type, and {LIST} are incremented by one. The
IGOOD! exit from the- BRM is then taken.

If any error occurred during or prior to execution
of the BRM, execution arrives at point)
The processor sets {IDIM, {LIST}+1} .and
{1SYMB, {LIST}+1} to zero and takes the 'BAD'
-exit from the BRM.

LISt (Flow Diagram 12.)

ILISt' is a zero~ARGUMENT COMMAND for output
to the teletype of the LIST of VARIABLES. The
operation merely consists of an execution of the BRM
'LIS1!', followed by a branch to point of the
DIRECTIVE SUBPROCESSOR .

BRM 'LISl! (Flow Diagram 12.)
The . BRM 'LIS1' is a routine which outputs to the

teletype the LIST of VARIABLES. Its call sequence

is as follows:

-45-

POP

'UNLO!

BRM LISl
[return location]

The contents of the A, B, and X registers are

garbage at both entry and exit.

The operation of the routine is as follows. First
an INDEX counter is initialized to -6f. A loop is
now entered which deals with each entry of the
VARIABLE LIST in turn. The INDEXED WORD
in the ISYMB-TABLE is output to the teletype,
followed by three "spaces". A POP 'UNLO! is
executed to unload from the INDEXED WORD in
the IDIM-TABLE the row and column dimensions
of the VARIABLE, and its BLOCK INDEX in the

S-TABLE. (This latter is not used).

The row dimension, a comma, the column dimension,
a carriage return, and lastly a line feed are output
in turn to the teletype. The INDEX counter is incre-

mented by one.

If all the entries in the ISYMB+~- and IDIM-TABLES
have been treated, exit from the BRM is taken; if
not the processor branches back to point
to handle the next pair of WORDS INDEXED.

(Flow Diagram 13.)
The POP 'UNLO' is a routine for unloading a WORD

from the IDIM-TABLE. The calling instruction is

as follows:

46

UNLO [address of storing location]

At entry the A and B registers contain garbage,
and the X register contains the INDEX of the
WORD of the IDIM-TABLE to be unloaded. At

exit all registers contain garbage.

Operation of the routine is as follows. {B} and

{A} are respectively set equal to o, -0'4{IDIM,{X}-1}
and 05-08{IDIM,{X}}. {B}, giving the BLOCK
INDEX in the S-TABLE of the corresponding
VARIABLE in the ISYMB-TABLE, are stored in

the addressed location.

0506{A} , giving the row dimension of the VARIABLE,
are stored in the addressed location plus one.

0708{A} , giving the column dimension of the
VARIABLE, are stored in the addressed location

plus two. The exit from the POP is then taken.

APPend (Flow Diagram 14.)

'APPend' is a zero-rARGUMENT COMMAND for
appending INDIRECT STATEMENTS to a PROGRAM
of such STATEMENTS. Here again the structure is
highly dependent on the use of a single BRM. At
entry {INSTRX} constitute the INDEX of the WORDS
in the INSTR- and PTR-TABLES into which the

next INDIRECT STATEMENT is to be coded.

Operation of the COMMAND is as follows. Immedi-

ately on entry a loop is entered, which inputs a
STATEMENT for each iteration. First {INSTRX}

-4 =

BRM

'PGRM!

are tested. If the value is negative, the INSTR-
and PTR-TABLES have not yet been completely
filled and more INDIRECT STATEMENTS can

be stored. The 'YES' branch is taken, and the
BRM 'PGRM' executed. This routine inputs

and codes an INDIRECT STATEMENT typed by
the user into INSTR,{INSTRX} and PTR,{INSTRX} .
If during the execution of the BRM use of the
COMMAND is terminated by the user, or an error
occurs such that use of the 'APPend' COMMAND
cannot be continued, EXIT1 is taken from the BRM
and a branch is made back to point of the
DIRECTIVE SUBPROCESSOR. If the user has
indicated that further STATEMENTS are to be

input, EXITZ2 is taken from the routine and a branch

back to point is made.

If at any iteration through the loop described,
{INSTRX} become non-negative, a 'NO' branch

is taken to point ——@ . The processor sets {B} =1
and arrives at point —9]. {ERR} are set equal to
{B} and a branch back to point of the
DIRECTIVE SUBPROCESSOR made.

(Flow Diagram 15.)

The BRM 'PGRM!' is a routine for handling the input
and coding of an INDIRECT STATEMENT into
specified WORDS of the INSTR- and PTR-TABLES.

The call sequence is as follows:

BRM PGRM

[EXIT1 return location]

[EXIT2 return location]

ZRO [address of location containing INDEX]

-48-

At entry and both exits the contents of all registers

are garbage.

Operation of the routine is as follows. On entry

the user is required either to type in a new
INDIRECT STATEMENT or-an asterisk. A

-~ BRM 'STAR!' is executed to test the first charac-
ter input. If an asterisk appears no further
INDIRECT STATEMENTS will be?iﬁput during
execution of the COMMAND using the BRM 'PGRM':
EXIT1 is taken from the BRM I'STAR', followed

by :EXIT! from the BRM 'PGRM'.

Otherwise the new user's input is considered to be
a new INDIRECT STATEMENT . The first three
characters are input and EXITZ2 from BRM !STAR!
taken. The third character is tested; if it is not a
colon an error condition has arisen and a 'NO!
branch is taken to point . If the character
is a colon, the 'YES' branch is taken and a BRM
"TPC! executed. The first two characters input
should be the LABEL of the STATEMENT . The. .-
BRM 'IPC! tries to convert the LABEL to its |
internal form. If unsuccessful, EXIT1 is taken
and a branch made to the point .

If the conversion is successful, the LABEL is
provisionally accepted and stored in a temporary
storage location. Next a BRM 'LOOK!' is employed
to check if such a LABEL has been used for a
previous ‘STATEMENT . If so, execution is directed
to point (r , ~where the processor sets
{ERR} =9, indicating an error; and thence to point
. If not the LABEL is finally accepted as

legal, and execution arrives at point .

-49-

At this point the next action is to obtain the address
of the location containing the INDEX of the WORDS
to be filled in the INSTR- and PTR-TABLES. This
address is inserted in the call sequence of a BRM
'INPUT', and the BRM executed. If an error
occurs, the 'BAD' exit is taken from BRM 'INPUT'

.and a branch back to the entry point of the BRM
'PGRM' made.

Otherwise the BRM 'INPUT' completes the input
and coding of the INDIRECT STATEMENT, and
takes the 'GOOD!' exit. On return {INSTR,{**}}
and {PTR, {**}} are the coded STATEMENT,

Finally, the LABEL is stored in 0506{PTR,{**}};
{INSTRX} are incremented by one, and EXIT2

taken from the routine.

INSert

COMment

BRAnch

DELete (Flow Diagram 16.)

The 'EDIT' component group of the EXECUTIVE
SUBPROCESSOR comprises coding for the three
one-ARGUMENT COMMANDS 'INSert!, 'COMment'
and 'BRAnch' and coding for the two-ARGUMENT
COMMAND 'DELete!. The processor starts by
executing operations that are the same for any of

the four COMMANDS, and then a secondary transfer
is made to complete execution of the particular
COMMAND .

-50-

INSert

Execution is as follows. First the secondary
transfer index number is unloaded and stored.
Next a check is made on the CHECKNUMBER

for the STATEMENT being executed. If it is

hon—zero, the STATEMENT has the wrong type
of ARGUMENT . The 'NO' branch is taken to
point . The procéssor sets {B} = 9
denoting an erroi‘, and branches to poini: ——E]
in the 'APPend' component of the EXECUTIVE
SUBPROCESSOR . |

Otherwise the 'YES' branch is taken, and an
ARGUMENT counter set to zero. A loop is now
entered which takes the ARGUMENTS in turn,

~ ignores them if they are zero, (which only happens

if that ARGUMENT does not exist) and by means of
a BRM 'LOOK!' obtains the INDEX of the WORD
in the PTR-TABLE which con’taihs that ARGUMENT

in OéO(). In other words, the processor finds the

STATEMENT which has a LABEL the same as the
ARGUMENT . If an ARGUMENT cannot be found in
the TABLE an error condition arises. A branch
to point is made; the processor sets

{B} = 7, and exe‘cution is dirécted to point —-{2—_[

of the 'APPend' component of the EXECUTIVE
SUBPROCESSOR . The INDICES obtained are

stored, and the seco_ndary transfer is now made.
Each COMMAND will now be dealt with in turn.
The 'INSert! COMMAND is used to insert one or

more INDIRECT STATEMENTS into a. PROGRAM
immediately following the STATEMENT with the

51~

LABEL specified by the ARGUMENT of the
'INSert! COMMAND. At the point
{T+1} constitute the INDEX in the INSTR-
and PTR-TABLES of the coded STATEMENT

after which the insertion is to occur.

Inserted STATEMENTS are handled one at a
time by a loop. Before entry into the loop, two

counters are initialized:

{T+2} are set equal to {T+1}
{T+3} are set equal to {T+1} +1

The loop is entered, and a test is made on {INSTRX} .
If the contents are not less than zero, then the
INSTR- and PTR-TABLES are full and insertions
are illegal. The 'NO! branch is taken and execution
is directed to point —— in the 'APPend' compo-
nent of the EXECUTIVE SUBPROCESSOR .

Otherwise the 'YES' branch is taken. Next, all
the WORDS of the INSTR~ and PTR~TABLES
following the ones INDEXED by {T+2} are moved
forward one TABLE entry to accommodate the next
STATEMENT to be inserted. A BRM 'PGRM!' is
executed to input the INDIRECT STATEMENT to
be inserted, and code it into INSTR,{T+2} and
PTR,{T+2} . From this BRM, EXIT2 is taken if
further STATEMENTS are yet to be inserted by the
'INSert! COMMAND . The counters T+2 and T+3
are incremented by one, and a branch back to the

beginning of the loop made.

-52-

BRAnch

DELete

If the insertion is complete, EXIT1 is taken from
the BRM 'PGRM'. {INSTRX} are incremented by
one. Because the process described above results

a gap in the INSTR~- and PTR-TABLES immediately
after the end of the insertion, the 'DELete' compo-
nent 6f the EXECUTIVE SUBPROCESSOR is now
used to eliminate it. This process completes exe~-
cution of the 'INSert! GOMMAND .

The 'BRAnch! COMMAND is used to redirect the
flow of execution of the INDIRECT STATEMENTS
of a PROGRAM, or to enter such.a PROGRAM.
At the point {T+1} constitute the INDEX
of the WORDS in the INSTR- and PTR-TABLES
which contain the coded STATEMENT next to be

executed.

Execution of the 'BRAnch! COMMAND is as follows.
{INDEX} are set equal to {T+1}. Execution is then
directed back to point of the DIRECTIVE
SUBPROCESSOR .

The 'DELete! COMMAND is used to delete sequences
of INDIRECT STATEMENTS from a PROGRAM. At
the point {T} constitute the INDEX in the
INSTR- and PTR-TABLES of the WORDS containing
the coded STATEMENT first in the NATURAL
SEQUENCE to be deleted. {T+1} constitute the

INDEX of the WORDS containing the coded STATEMENT

last in the NATURAL SEQUENCE to be deleted. If -
only one STATEMENT is to be deleted from the
PROGRAM, {T} ={T+1}.

53

Execution of the 'DELete! COMMAND is as follows.
First {T+l} are incremented by one. If {T+1} ¥ {T},
showing that the LABELS given in the ARGUMENTS
of the 'DELete! COMMAND have been input in
reverse order, a 'NO' branch is taken to point --
in the 'EDIT' component group. Otherwise the 'YES!'

branch is taken, and the deletion takes place.

The deletion is effected by moving backward in turn
the sequences of WORDS INSTR,{T+1} through
INSTR, -1 and PTR,{T+1} through PTR, -1 so that
the sequences start at INDEX {T}. The vacant
WORDS appearing at the front of the TABLES are
set to zero, while the previous contents of the WORDS
with INDICES {T} through {T+1}-1 are obliterated.
At the end of this process {INSTRX} are set to the
previous value minus the number of entries deleted
in each TABLE, and a branch back to point —[4]

in the DIRECTIVE SUBPROCESSOR made.

COMment The 'COMment' COMMAND is used to attach a
COMMENT to an INDIRECT STATEMENT . This
COMMENT will then be automatically output by the
DIRECTIVE SUBPROCESSOR immediately prior to
the execution of that STATEMENT .

At the point {T+1} constitute the INDEX
of the WORDS in the INSTR- and PTR~-TABLES

containing the coded STATEMENT to which the
COMMENT is to be attached.

11
Execution of the 'COMment! COMMAND is as follows.
The difference of the string pointers of the CTAB-TABLE

! It is useful to read the following description in conjunction with the
SDS 940 TECHNICAL MANUAL [3] and the STRING PROCESSING
REFERENCE MANUAL [6].

-54-

is obtained. If the value is greater than 2927 there
may not be room for the COMMENT the user wishes
to attach. A 'YES' branch is thus faken; the pro-
cessor sets {ERR} = 1§, denoting an ERROR
MESSAGE reference number, and branches to point
of the DIRECTIVE SUBPROCESSOR.

If the difference is not greater than 2927, the 'NO!
branch is taken. 01-04{PTR, {T+1}} are set equal

to this difference, and a "bell" is output to the tele-
type to signal to the user to input the COMMENT
characters. The characters are input, counted and
stored in the CTAB-TABLE at the end of the

existing string until either a carriage return character
appears, or the count reaches 72. In either case, a
carriage return is added to the end of the COMMENT

string.

Finally a line feed is output to the teletype, and
execution is directed back to point ——E of the
DIRECTIVE SUBPROCESSOR .

This completes the discussion of this group of four

components.
PROgram (Flow Diagram 17.)

'PROgram’' is a zero~ARGUMENT COMMAND used

to output to the teletype the PROGRAMS of INDIRECT
STATEMENTS typed in by the user. Execution is as
follows. A loop handles the decoding and output of

each pair of WORDS from the INSTR- and PTR-TABLES
in turn. The contents of the X register INDEX the

pair of WORDS handled. Initially {X} = -63.

-55=

First the BRM 'WDS' is executed to output the
COMMENT to the teletype, if one is attached to

the STATEMENT. Next a test is made: if
OS-OB{PTR, {X}} are zero implying that a vacant
pair of WORDS in the INSTR- and PTR-TABLES
has been reached, a '"YES' branch is taken and
execution is directed back to point in the
DIRECTIVE SUBPROCESSOR . This condition
arises only when all the STATEMENTS of a
PROGRAM of less than maximal length have already

been output.

If the contents are non-zero the 'NO!' branch is taken.
A BRM T'PIC! is used to output the LABEL of the
STATEMENT coded into O O({PTR,{X}} to the
teletype. This is followed by the output of a colon.
The remainder of the contents of the pair of WORDS

are then unloaded in the following way:

{T+1} are set equal to 0708{INSTR, {x}}
{T+2} are set equalto 0708{PTR, {x}}
{A} are loaded with O;-O,{INSTR, {x}}

A then contains the two coded ARGUMENTS of the

STATEMENT, T+l contains the coded COMMAND,
and T+2 the CHECKNUMBER . Temporary storage
location T+3 is used as an ARGUMENT counter and

initialized to zero.

The CHECKNUMBER is now tested. If it is non-zero,
then there is at least one VARIABLE-type ARGUMENT
of the STATEMENT ; a 'YES' branch is taken to the

point PR]1). Ifit is zero then either there are no

-56-

ARGUMENTS or there is at least one LABEL-type
ARGUMENT . The 'NO! branch is taken. The
ARGUMENTS vare unloaded from the A register

in turn and output to the teletype by means of a
BRM 'PIC'. ARGUMENTS with zero value are in
actuality non-existent, and are not output. After
each ARGUMENT a comma is output. After all
ARGUMENTS ére output execution is directed to
point PR2 '

Considering now execution from the point s
again each ARGUMENT is unloaded in turn from the

A register. Zero ARGUMENTS are again ignored.
This time the contents of the WORD of the ISYMB-
TABLE indexed by the ARGUMENT are obtained,
shifted left one character code, and merged with
the character code for a comma. The resultis
output to the teletype. After all ARGUMENTS have
been output in this fashion, execution arrives at

point (p~PR2

At this point the COMMAND is output: {ICOM,{T+1}}
are obtained and the value of the ARGUMENT counter
reached after the above processes subtracted from
bits 16 and 17. The result is output to the teletype,

- followed by a carriage return and line feed. The X
register is incremented by one. If it is still negative
there may be furfher STATEMENTS to be output, and
the 'YES' branch is taken back to the beginning of the
loop.

If not, the 'NO' branch is taken, and execution is
directed back to point of the DIRECTIVE
SUBPROCESSOR . This latter condition can only arise
if the PROGRAM is of maximal length.

-57-

SAVe (Flow Diagram 18.)

'SAVe'! is a zero~ARGUMENT COMMAND used to
store on a disk file a PROGRAM of INDIRECT
STATEMENTS, together with other data required

to retrieve the PROGRAM and restore it to the

core satisfactorily. First the contents of the INSTR-
and PTR-TABLES are stored; next the contents of
the CTAB-TABLE ; and finally the contents of the
ISYMB- and IDIM-TABLES.

Operation of the COMMAND is as follows. On entry

at point the BRM'OUTF' is executed to

ready the output file. Next the file identifying WORD
31663547, is written on the file, followed by {INSTRX} .
"WORDS from the INSTR- and PTR-TABLES are
alternately written on the file, starting with

{INSTR, -63} and {PTR, -63} and ending with

{INSTR, {INSTRX}} and {PTR,{INSTRX}}. This.
completes storage of the PROGRAM itself.

The total number of COMMENT characters in all
COMMENTS is now calculated and stored on the file.
The contents of the CTAB-TABLE are then written
on the file WORD by WORD, three characters at a
time. This completes storage of the COMMENTS
attached to the STATEMENTS of the PROGRAM .

Finally, the LIST of VARIABLES is stored, as
follows. {LIST} are written on the disk file, followed
by alternate WORDS from the ISYMB- and IDIM-
TABLES, starting with {ISYMB, -6} and {IDIM, -68}
and ending with {ISYMB, {LIST}} and {IDIM, {LIST}}.

-58 -

The disk file is then closed and a branch back to

point in the DIRECTIVE SUBPROCESSOR
made.

The 'SAVe! COMMAND uses one BRM.
BRM 'OUTF' (Flow Diagram 19.)

The BRM 'OUTF' is a routine for ~ma.king ready a
disk file for output from the core. The call sequence

is as follows:

BRM OUTF
[return location]

Both at entry and at exit all registers contain garbage.

Operation of the routine is as follows. On entry, the

message MS5 is output to the teletype:
FILE NAME

A BRS 18 is executed to read the output file name
from the teletype. If the file name is acceptable, the
'GOOD'!' exit is taken. The'file type (symbolic) is
loaded, and a BRS 19 executed to open the file for
output. If the file is successfully opened, the 'GOOD'
exit is taken. A carriage return, and line feed are
output to the teletype, and the exit from the BRM

taken.

If the file name is unacceptable, or cannot be opened,
a 'BAD' exit is taken from the BRS concerned. {ERR}

-59~

are set equal to 9 denoting an ERROR MESSAGE
reference number. A BRM 'ER1l' is executed to
output an ERROR MESSAGE to the teletype, and
execution returns to the start of the BRM to try

and introduce a new file name.
REStore (Flow Diagram 24.)

'REStore! is a zero~ARGUMENT COMMAND used

to recover a PROGRAM of INDIRECT STATEMENTS
and other information to make it usable, from a disk
file. It is complementary to the 'SAVe! COMMAND.
First the contents of the INSTR- and PTR-TABLES
are recovered; next the contents of the CTAB-TABLE;
and lastly the contents of the ISYMB- and IDIM-
TABLES. The previous contents of these TABLES are
deleted. On the user's requirement, thee VARIABLE
LIST may then be redimensioned: this involves the
reconstruction of the IDIM-TABLE.

Operation of the 'REStore’ COMMAND is as follows.
On entry at point the BRM !'INF' is executed
to make ready the disk file for input to the core. The
first WORD on the file should be the file identifier
316635478 . If it is not, the file is not one created by

a 'SAVe'! COMMAND. The 'NO' branch is taken;

the file is closed, ERROR MESSAGE 9 output to the
teletype, and execution directed back to point REL
If the file identifying WORD is correct, the 'YES!
branch is taken and {INSTRX} set equal to the contents
of the next file WORD. This gives the number of
WORDS in the INSTR- and PTR-TABLES to be filled

from the file.

-60-

The WORDS of the INSTR- and PTR-TABLES

are now filled alternately from successive WORDS
of the disk file, starting at {INSTR, -63} and
{PTR, -63}, and terminating at {INSTR, {INSTRX}}
and {PTR,{INSTRX}}. The remaining WORDS of
the INSTR~- and PTR-TABLES are set to zero.

The next WORD input from the disk file is the number

of COMMENT characters in the CTAB-TABLE. The

characters themselves are read into the CTAB-TABLE
from the file, three at a time, WORD by WORD. The
remainder of the CTAB-TABLE is set to zero. The

string pointers for the TABLE are now reinstated.

This completes the input from the file of the PROGRAM
and its attached COMMENTS. It now remains to input
the VARIABLE LIST. The next WORD input from

the file into {LIST} gives the length of the VARIABLE
LIST . WORDS are now read from file alternately

into the ISYMB- and IDIM-TABLES, starting at
{ISYMB, -6#} and {IDIM, -68} and ending at

{1sYMB, {LIST}} and {IDIM, {LIST}}. The remaining
WORDS of the ISYMB~- and IDIM-TABLES are set to

zero. The disk file is then closed.

The LIST of VARIABLES is now output to the tele-
type: first the message MSl1g:

" VARIABLES USED

and then the LIST itself by means of a BRM I'LIS1!,
Execution now arrives at the point RELl . The

user must now decide whether he wants to redimension
the VARIABLE LIST. Message MS11 is output to
the teletype:

-61-

REDIMENSION VARIABLES ?

Characters are now input one by one until a carriage
return appears. A line feed is now output to the

teletype. If the characters input constitute the word

INO' a2 branch to point of the DIRECTIVE
SUBPROCESSOR is made. If the characters consti-

tute neither the word 'NO' nor the word 'YES'

execution reaches point and {ERR} are

set equal to 9 denoting an ERROR MESSAGE reference
number. If the characters constitute the word 'YES!

the VARIABLE LIST is now redimensioned.

Each entry in the ISYMB-TABLE is treated in turn
excepting the standard output VARIABLE, starting
at {ISYMB, -59} and ending at {ISYMB, {LIST}}.
'The name of the VARIABLE is output from the current
WORD in the ISYMB-TABLE , followed by a '"bell™.
The terminating character of the name, either "="
or a carriage return, is input by the user, followed
by the new dimensions, the latter by means of the
BRM 'DIMS'. At the end of this process the IDIM-
TABLE has been completely reconstructed, and
execution returns to point of the DIRECTIVE
SUBPROCESSOR .

If the 'BAD' ‘exit was taken from BRM 'DIMS!
abnormally stopping the redimensioning process, or
if execution passed the point then a
BRM 'ERI1' is executed to output an ERROR

" MESSAGE to the teletype. Execution then returns

to point RELD to repeat the redimensioning

process.

-62-

The 'REStore'! operation calls four subroutines. Of these only
BRM!'INF' has not yet been described.

BRM 'INF' (Flow Diagram 21.)

The BRM 'INF' is a routine for making ready a
disk file for input to the core. The call sequence

is as follows:

BRM INF
[return location]

Both at entry and at exit all registers contain garbage.

The operation of the routine is as follows. On entry

the mej'ssa.ge MS5 is output to the teletype:
FILE NAME

A BRS 15 is executed to read the input file name
from the teletype. If the"ﬁle name is acéeptable,' the
'GOOD! exit is taken. Then a BRS 16 is executed
to open the file for input. If the file is successfully
opened, the 'GOOD' exit is taken. A carriage return
and a line feed are output to the teletype, and the exit
from the BRM taken.

If the file name is unacceptable, or cannot be opened,
a 'BAD!' exit is taken from the BRS concerned. The
pArocessor sets {ERR} = 9 denoting an ERROR
MESSAGE reference number. A BRM 'ERI1! is
executed to output the indicated ERROR MESSAGE

-63-

to the teletype, and execution returns to the start of

the BRM to try and introduce a new file name.

This concludes the description of those COMMANDS not involving the

manipulation of the matrices of MAP.

Introduction to Floating-Point Coding

THOSE COMPONENTS of the EXECUTIVE SUBPROCESSOR involving
the actual manipulation of MAP matrix and scalar quantities have

not yet been described. In these components repeated use is made

of certain standard forms of ARPAS coding specially adapted to

the processing of double-location WORDS in the S-TABLE and

other temporary storage TABLES. In the SDS 940 system all
floating~point operations are software generated: a range of BRS's

and SYSPOPS handle the operations of addition, subtraction, multi-

plication, division, and several others12

The loading and storing of a floating point number are achieved by
the 'LDP! and 'STP!' SYSPOPS respectively. F, of the WORD
is moved to and from the A register; F, and E of the WORD are

moved to and from the B register.

To carry out an operation on a specific WORD in a TABLE of
TYPE I or II WORDS, the INDEX of that WORD is loaded into
the X register. The address field of the instruction executing the
‘desired operation contains the name of the TABLE modified by
the contents of the X‘ register. To load the X register either the

12 The operation of these system routines is described in the SDS

940 TECHNICAL MANUAL [3], and the FLOATING POINT
'SYSTEM MANUAL [2].

-64_

instruction 'CAX' (copy A to X) or the instruction 'LDX **!
(load X from address **) might be used. This is standard pro-
gramming practice. In the MAP processor two POPS have been
defined so that operations on specific WORDS in TABLES of
TYPE III WORDS may be similarly programmed.

POP 'FLDX' (Flow Diagram 22.)

The POP 'FLDX!' is the analogue of the 'LDX!'
instruction. The contents of the addressed
location are multiplied by two and placed in the
X register. The addressed location, and the
A and B registers are left intact. The calling

instruction is:

FLDX [address of location containing
value to be loaded]

POP 'FCAX' (Flow Diagram 22.)

The POP 'FCAX! is the analogue of the 'CAX!
instruction. The contents of the A register are
multiplied by two and placed in the X register.
The A and B registers contain garbage at the

end of the operation. The calling instruction is:

FCAX

EXAMPLE: To get the WORD INDEXED by {TEMP} from a TABLE -~

TYPE I/1L TYPE III
LDX TEMP FLDX TEMP

LDA TABLE,Z2 LDP TABLE,?2

~-65-

In general, since matrix operations consist of repetitive operations
on their elements, there will be many nested loops in the part of the
EXECUTIVE SUBPROCESSOR which deals with MAP matrix
manipulation. These loops are handled in a standard way, in the
same manner as loops are handled in a Fortran program. In fact
some sections of coding in the processor were written by translating
Fortran programs into the standard structures of ARPAS code to
be described. This applies in particular to the 'DETerminant!,
'INVert' and 'ElGenvalue! COMMANDS.

The process of carrying out a particular operation on each of the
elements of a matrix VARIABLE in the S-TABLE in turn will now
be described. This is readily generalized to other related processes.

Assume the following:

{T} constitute the BLOCK INDEX in the
S-TABLE of the VARIABLE occurring
immediateiy before the VARIABLE to be
processed. This INDEX is the INDEX
of the WORD in the S-TABLE immediately
before the first WORD of the BLLOCK of
storage devoted to the VARIABLE to be

processed.

{T+1} is the number of elements of the matrix
VARIABLE, that is, the number of WORDS
in the BLOCK devoted to that VARIABLE .

T+2 1is a temporary storage location.

Then the following section of coding will load and operate on each of

the elements of the matrix VARIABLE in turn.

-66-

EXAMPILE:

CLA
STA T+2

RETN MIN T+2
LDA T+2
ADD T
FCAX
LDP S,2

operate on element obtained from TABLE:I

LDA T+2
SKE T+l
BRU RETN

It is easy to see how this structure may be extended to nested loops
and other forms. Sometimes it is useful to generate row and column
indices separately, and then to calculate from these the INDEX in
the S-TABLE of the element of the VARIABLE. The POP 'CALC!'

of the processor handles this process.
POP 'CALC' (Flow Diagram 23.)

The POP !'CALC' converts the row and column
indices of an element of a matrix VARIABLE to
the INDEX of that element in the S-TABLE .

The calling instruction is:

CALC [address of location containing
column size]

t entry {A} and {B} are the row and column index
values, »respectively. At exit {A} constitute the
INDEX of the element in the S-TABLE, and {B} are
garbage. The X register is not used. Operation is
as follows: one is subtracted from the row index; the
result is multiplied by the column dimension of the

matrix, and the column index added. This result is

-67~-

the INDEX in the S-TABLE relative to the BLOCK
INDEX of the previous VARIABLE in the TABLE.

The following example shows the use of the POP 'CALC' in con-
junction with a double loop. Each element of the matrix VARIABLE
is loaded and operated on in turn row by row. For this example

assume the following:

{T} constitute the BLOCK INDEX inthe S-TABLE
of the VARIABLE occurring immediately
before the VARIABLE to be processed.

{T+1} constitute the row dimension of the matrix
VARIABLE .

{T+2} constitute the column dimension of the matrix
VARIABLE .

T+3 and T+4 are temporary storage locations.

EXAMPLE:

CLA
STA T+3
RETI MIN T+3
CLA
STA T+4
MIN T+4
LDP T+3
CALC T+2
ADD T
FCAX
LDP §,2

operate on element obtained from TABLE]

LDA T+4
SKE T+2
BRU RETI1+3
LDA T+3
SKE T+1
BRU RETI

-68-

This completes the description of the basic coding structures
involved in execution of COMMANDS dealing with the manipulation
of MAP matrices. It now remains to describe the operation of
the COMMANDS themselves.

Part II: Components Invulvin'g the Manipulation of Matrices

THE BASIC CODING structures from which the components of
the EXECUTIVE SUBPROCESSOR executing matrix manipulation
operations are built up have been described. Flowcharts of the
components themselves are shown in Flow Diagrams 24-35. In
the description that follows, the constituent basic coding structures
are in general not de’s‘c‘ribed step by step, but mostly as complete

functional units.
OMIt (Flow Diagram 24.)

'IOMIt' is a single~ARGUMENT COMMAND used to
~delete an entry from the LIST of VARIABLES. At
the same time thé COMMAND erases from the
S-TABLE the BLOCK of storage associated with
the deleted VARIABLE , and closes up the gap.

Operation of the COMMAND is as follows. At first
entry at point OMI) a BRM 'LAB! is executed
to check the type of ARGUMENT . If the ARGUMENT
is LABEL-type the 'BAD' exit is taken, and execu-
tion proceeds to point in the 'EDIT' component
group. If the ARGUMENT is correctly VARIABLE-
type, the 'GOOD' exit is taken from the BRM. The

69

contents of the X register are set equal to the
INDEX of the WORD in the ISYMB-TABLE im-
mediately after the one to be deleted.

A check is now made on the value of this INDEX.
If it is not greater than -59‘ a 'NO! branch is
taken and execution returns to point of the
DIRECTIVE SUBPROCESSOR. This condition
can only arise if the user tries to delete the stan-
dard output VARIABLE from the LIST : the action
is to ignore the 'OMIt' COMMAND.

If the value of the INDEX is greater than -59 a

'YES' branch is taken and the deletion process

takes place. O,-O,{IDIM, {x}-2}, 01-04{]'.DIM, {x}-1}
and their difference are temporarily stored in loca-
tions Q, Q+1 and T respectively. The last quantity

is the number of WORDS by which all the entries in

the S-TABLE after the ones deleted must be moved
backward to fill the gap created.

Next the ISYMB- and IDIM-TABLES are changed as
follows. For all values of ** starting at {X} and
ending at -1, {ISYMB,** -1} are replaced with
{ISYMB, **} , and {IDIM,** -1} are replaced with
{IDIM,**} - {T} if {IDIM,**} ;!ﬂ or zero otherwise.
One is subtracted from {LIST}.

Finally the S-TABLE is updated as follows. For all
values of ** starting at {Q+1}+1 and ending at
{ENDS+1}, {s,*%} are moved backward to {S,**-T},
thus obliterating the BLLOCK of storage allocated to
the deleted VARIABLE .

-70~

{ISYMB, g} and {IDIM, g} are set equal to zero and
a branch back to point —[4] of the DIRECTIVE
SUBPROCESSOR made.

The 'OMIit' COMMAND uses one routine not already described.

BRM 'LAB!

ElGenvalue
DETerminant
INVert

DIAgonal sum

(Flow Diagram 25.)

The BRM 'LAB' is a routine for chiecking the type
of an ARGUMENT of a STATEMENT immediately
prior to the execution of its COMMAND . The call

sequence is:

BRM LAB
[return location]

Both at entry and at exit all registers contain garbage.

Operation of thé. BRM is as follows. On entry
{T+3} constitute the CHECKNUMBER of the
STATEMENT. This is tested: if it is zero, the
ARGUMENT is LABEL-type; the 'NO' branch is
taken to point -—- in the 'EDIT' component group.
If it is non-zero, then the ARGUMENT is correctly
VARIABLE-type. A 'YES' branch is taken, and

, {T+1} and {T+2} replaced by their respectwe two's

complements The exit from the BRM is then taken.

(Flow Diagrams 26-29.)

The 'GROUPY' component group compvfises three
single~ARGUMENT COMMANDS 'DETerminant!,

-71-

'INVert' and 'DIAgonal sum!', where the result of
the operation is placed in the standard output
VARIABLE ; and one single-ARGUMENT COMMAND
'EIGenvalue' where the standard output VARIABLE
is used as working space, and the results are output

to the teletype.

On entry, a preliminary section of coding common to
any of the four COMMANDS is executed. A secon-
dary transfer is then made to further sections of
coding dealing separately with each individual
COMMAND.

Flow diagram 26 shows the preliminary section of
coding. Operation is as follows. On entry at point

m the secondary transfer index number is
stored, and a BRM 'LAB' executed to check the
type of the ARGUMENT . If the ARGUMENT is
found to be LABEL-type, the 'BAD!' exit is taken,
and a branch to point in the 'EDIT' compo-
nent group made. If the ARGUMENT is VARIABLE-
type the 'GOOD' exit is taken from the BRM.

Next a POP 'UNLO' is executed to unload the dimen-
sions of the VARIABLE and its BLOCK INDEX in
the S-TABLE from the IDIM-TABLE. A testis
then made on these dimensions: if the VARIABLE

is not a square matrix a 'NO' branch is taken; the
processor sets {B} = 8 and a branch to point ——Eﬂ

in the 'APPend' component is made.
If the VARIABLE is a square matrix, the 'YES!'

branch is taken and a further test made. If the
COMMAND executed is not 'INVert', a BRM 'FIX!

-72-

DIAgonal sum

is executed to set the row and column dimensions

of the standard output VARIABLE equal to unity.
Otherwise a BRM IFIX! is executed to set the

row and column dimensions of the standard output
VARIABLE to the same as those of the ARGUMENT
associated with the COMMAND . Execution con-
verges again to a common path and the secondary

transfer is made.

The 'DIAgonal sum! COMMAND is used to find
the trace of a square matrix. Its execution is a
relatively simple example of the standardized
structure of the floating-point coding. Execution
proceeds from the point . A recursive
sum is made of all the diagonal elements of the
VARIABLE indicated in the ARGUMENT, the
result being accumulated in W, 1 13. When the
sum is complete, {,S, 1} are set equal to {W, 1}.
Hence on completion of the COMMAND, the
standard output VARIABLE is a scalar, with a
value equal to the trace of the VARIABLE operated

on.

DETerminant The 'DETerminant! COMMAND is used to
(Flow Diagram 27.) find the determinant of a square matrix.
The method of pivotal condensation is used. For an
"N by N matrix this method consists of N-1 iterations.
In each iteration another column of the matrix is
operated on so as to bring its sub-diagonal elements
to zero,
13

The W-TABLE is a temporary storage TABLE for TYPE III

WORDS; its length is 191 WORDS. It is capable of storing a
MAP matrix of any permissible size. The zerot® WORD is not
normally used.

~-73=

In the 'DETerminant' component of the EXECUTIVE
SUBPROCESSOR these iterations are carried out by
a loop: each iteration of the loop is in two phases.
In the first phase the current diagonal (pivotal) ele-
ment is tested, and made non-zero if the operation
is necessary. In the second phase the matrix is
operated on to bring the sub-diagonal elements of a
new column to zero. On the completion of the itera~-
tions, the determinant of the resulting matrix is the

product of the diagonal elements.

Execution of the COMMAND is as follows. On entry
at point a temporary result store Q is
'set equalto l.f. A BRM 'COPY!' is executed to
transfer the elements of the ARGUMENT to the
standard output VARIABLE . If the ARGUMENT is
scalar, the condensation process is not required and
execution proceeds to point . Otherwise

a 'NO! branch is taken. {K+1} are set equal to the
dimension of the ARGUMENT minus one, and the
contents of a loop counter KK initialized to zero.
Execution now reaches point and the main

iterative loop is entered.

The first phase is now carried out. {KK} are incre-
mented by one, and the contents of a counter Q+3

set equal to one. {Q+3} count the number of times
attempts are made to make non-zero a zero pivotal
element. Execution now reaches point

at the start of a loop which is iterated once every

time an attempt is made to produce a non-zero pivot.

74

In this loop, first the absolute value of the pivotal
element OO(KK, KK) is calculated. If its value
is less than about lﬂ it is taken as zero, and
steps are taken to make it non-zero. Otherw1se

the first phase in the main loop is flnlshed

The following action is taken to try to produce a

non-zero pivot. {Q+5} are set equal to {Q+3} + {KK}

‘and {Q+3} are incremented by one. A test is now

made: if {Q+3} = {K+1} then it is impossible to

‘produce a non-zero pivbt and the VARIABLE consti-

tutes a singular matrix. A 'YES' ‘branch is taken
to po1nt . If the equalxty does not hold, the
column {Q+5} of 00 is added into the column

{KK} at point . Executmn then returns

to point for a new check on the pivot now

contained in column ‘ {KK} .

Suppose now that the pivotal element OO(KK, KK)
has been made non-zero. The second phase of the
main loop is»now"ca.rried out. First {KK+1} are
set equal to {KK} . Exeﬁcuti‘on now reaches point
_ at the start of another inner loop. For
each iteration round this ldop a row of the matrix

is operated upon so as to bring the element in the
row in the same column as the pivotal element equal
to zero. The f0110w1ng act1on is taken. {KK+1}

are incremented by one. The ratio

14

Th1s new notation is also-used in later parts of this section. By
*%) is meant the element of the standard output VARIABLE

100! whose row and column indices are {*} and F

tively. To obtain OO(*,**) a BRM 'CALC' is first employed

to obtain the INDEX of the appropriate WORD in the S-TABLE.

>M*} respec-

-75-

OO(KK+1, KK)/OO(KK, KK) is calculated and stored.
Then row {KK} of the matrix is multiplied by the
stored ratio, nega.fed and added into the row

{KK+1} of the rxiatrix. If further rows of the matrix
remain to be treated, execution returns to point

. If not the second phase is complete.

Another test is now.made. If {KK} ;({K+1} then
further iterations of the main loop are required to
complete the condensation process. Execution
therefore returns to point . If not, a
'YES' branch is taken; the diagonal elements of
the matrix are summed and the result placed in Q.
The final result in Q is then transferred to the first
WORD in the S-TABLE . Execution now reaches
point , at which point the standard output
VARIABLE contains the determinant of the matrix
VARIABLE indicated by the ARGUMENT .

If the value is very small or zero, execution proceeds

via a 'YES' branch to point . Otherwise a
'NO! branch is taken, and execution returns to point

in the DIRECTIVE SUBPROCESSOR .

Execution reaches point if the matrix is
singular. The standard output VARIABLE is set

equal to #.#, and message MS4 output to the
teletype:

DETERMINANT ZERO

Execution then returns to point in the
DIRECTIVE SUBPROCESSOR .

-76-

ElIGenvalue The 'EIGenvalue! COMMAND is used to
(Flow Diagram 28.) find the eigenvalues and eigenvectors of a
squére matrix. The results are output to the teletype,
and not stored. The Leverrier-Fadeev method is
used to derive the characteristic polynomial of the
matrix. This is then solved by Bernoulli's method,
to obtain the eigehvalues. The eigenvectors are
then obtained using the eigenvalues, and intermediate
results from the é,pplication of the Leverrier-Fadeev
method.

A complete exposition of the method may be found in
[7]. For convenience the algorithms are summarized
below. Let)\1’)‘2’ ceey hn be the eigenvalues of the
n by n matrix A, Then the characteristic polynomial

is
n n-1 n-2 _
PN i PL R PY S q_n_l)s qn—}?f (1)
The following recursion gives the coefficients q;:

A= A , trace(Al) =q , B1 = A1 - qll,
5 = AB1 R trace(Az) = Zq2 s B2 = AZ - qZI,

(2)
=ABn_2 , trace(An_l) =(n~ l)qn_1 s Bn-l :An-l - qn_ll

A = AB

n n-1 °? Frace('An) = ndy ’ Bn N An "

At least one of the columns of the matrix Qi , Where

_an-1 n-2 .
Qi—hi I+)~i By +.... +)~iBn_2+Bn_1 (3)

_77-

is the eigenvector corresponding to)\i , while the
others are zero. If the columns are summed,

then it is certain that the result is the eigenvector.

The eigenvalues are obtained by finding in turn all
the roots of the characteristic polynomial. The
roots are obtained in turn, starting with the domi-
nant one. | When this is obt'ained thé order of the
polynomial is reduced and the process repeated as
many times as required. At each stage the following

recursion is formed:

Sl -qq = 0
S, 5193 249, =0 (4)
Sn =S 19 7 eeee Slqn_1 -nq = 0
fori>n
§; 75191 " --ee e "Si41-n%n-1 " 809, =0 ()

If the dominant root is a real root)»1 then

S
p—= p-l

If the dominant root is a complex pair Xl{cos By ti sinp.l}
then

2
- S - S
Lim SpSD-Z Sp-l 2\%. Lim psp-S Sp-lzp—Z
- b4
p—re= S S -SZ 1 pP—ree S S -S .
p-17p-3 "p-2 p-1"p-3 “p-2

-78 -

If the dominant root is a real pair of equal magnitude

but opposite sign)»1 , -7\1 then

5 2
Lim gP— = -A] (8)
p—e "p-2

The method will not work if two distinct complex

pairs exist with equal absolute value.

The operation of the 'ElGenvalue' COMMAND is now
described. It is divided into three phases. In the first
phase, the coefficients of the characteristic polynomial
are calculated. The second and third phases are con-
tained in a loop iterated once for every real root or
complex pair the second phase obtains from the poly-
nomial. The third phase calculates the eigenvector

or complex pair corresponding to the root or pair

found by the second phase. The third phase also handles
output of the results to the teletype, and reduction of

the order of the polynomial.

Execution of the first phase is as follows. On entry
at point EIG) a BRM. 'COPY' is executed to
transfer the contents of the VARIABLE indicated by
the ARGUMENT to the W-TABLE. The TR-TABLE
is used to store coefficients of the characteristic
polynomial. 15 {TR, #} are set equal to 1.@. Next
the matrix in the W-TABLE is searched to find the

15 The TR-TABLE is a TYPE III TABLE 11 WORDS long used for

the temporary storage of floating-point numbers.

..79.-

two elements having the greatest and least absolute
values. {Q} are set equal to the mean of the two
absolute values. All the elements of the matrix

in the W-TABLE are then normalized by dividing
by {Q}.

Actual calculation of the coefficients of the polyno-
mial now takes place. The counter {Q+3} is
initialized to zero. Execution now reaches point

, the start of a loop which is iterated once
for every coefficient calculated. Inside the loop,
execution proceeds as follows. First {Q.+3} are
incremented by one. {TR, {Q+3}} are set equal to
ﬂ. ﬁ ' {TR,{Q+3}} are then set equal to the negative
of the accumulated sum of the diagonal elements of
the matrix in the W-TABLE divided by FLOAT{Q+3}. 16
At the same time the column {Q+3} of the V-TABLE17
is set to zero. Execution arrives at point EI2
at which stage {TR,{Q+3}} are added to the diagonal
elements of the matrix in the W-TABLE . All the

H

columns of this matrix are then added into column
{Q+3} of the V-TABLE, and at the same time the
matrix is premultiplied by the normalized matrix
VARIABLE indicated by the ARGUMENT, setting
the result back in the W-TABLE.

It can be seen that this process corresponds to one
iteration of the recursion shown in Eqn. (2) above.

1f {Q+3} = {K+1} where {K+1} constitute the dimen-
sion of the VARIABLE then all the coefficients have

16 FLOAT{Q+3} means {Q+3} converted to a floating-point number.

17 The V-TABLE is a temporary storage TABLE for TYPE I

WORDS, 1§l WORDS in length. It is identical in form and
purpose to the W-TABLE.

-80-

been found. Otherwise the loop is iterated once
more by returning to point [28] . On comple-
, with
{K+1} = {K+2} equal to the dimension of the
VARIABLE .

tion, execution arrives at point EI4

Point EI4) is the beginning of the loop con-
taining the second and third phases of execution,

and is also the beginning of the second phase.
Essentially this phase calculates the dominant

root or complex pair of the characteristic polynomial,
by use of Eqns. (4) and then by iteration of Eqn. (5)
until one of the limits given in Eqns. (6) through (8)

has been reached to within some specified accuracy.

First the iteration counter {Q+3} is initialized to
zero. {KK} , which indicate the number of times
the accuracy criterion has been tentatively met,
are set to zero:. The W-TABLE is from now on
used to store intermediate results. Eventually
{W,97} and {W, 98} will contain the real and
imaginary parts of the eigenvalues of the norma-
lized matrix. At this point {W, 98} and {W, 1¢4}
are set equal to ff. . The inner loop iterating
Eqns. (4) and (5) is now entered at point .
{Q+3} are incremented by one, and {KK+1},

denoting either a real or complex root, set to unity.

Either of two courses of action now ensue: if

{Q+3} > lﬁ, ‘then {Q+4} are set equal to 1§ and
{w,1}..... {W, 10} each moved backwards one
WORD to W,f.... W,9. If {Q+3} S 1§, then
{Q+4} are set equal to {Q+3} . In either case {W, a4}
are set to FLOAT{Q+3} and {W,{Q+4}} to g.4.

-81-

Next {Q+6} are set to either {Q+3} or {K+2},
whichever has the smaller value. Execution now
reaches point - EI5 , where {W,'{Q+4}} are
set equal to the sum from i =1 to {Q+6} of
{TR, i} multiplied by {W, {Q+4}~i} . At this
stage, if more than 1§ iterations of the loop

have been carried out, {W,14}...{W,1} are

the ten most receﬁtly calculated values Si in
Eqn. (5).

A further test is made. If the value of {Q+3}
indicates that fewer than 16 iterations of Eqns.
(4) and (5) have been carried out, no testing for
convergence is made, and execution proceeds to
point EI6) . If more than 15 iterations
have been carried out, testing is now started.
First a test is made for convergence to the limits

shown in Eqns. {7) and (8).
The processor sets
2
{w,11} = {w,9H{w, 7} - {w,8}

and calculates {W,1g}{wW,8} - {W,9}2. This

latter, if non-zero divided by {W, 11}, is stored

in W,12. If the absolute value [{W,12} -{W,184}]/{w,12}
is less than about 1¢-7 the convergence criterion is

met this iteration, and {KK} are incremented by

one. In any event {W,1fg} are set equal to

{W, 12} and a test for convergence to the limit

shown in Eqn. (6) follows.

The test is made on {W, 11}, divided by {W, 8}2

if the former is non~-zero. If the absolute value

-82-

is less than 1¢_7 , then the convergence criterion

is met this iteration, and {KK} are decremented by
one. In this case {W, 97} are set équal to {W, 14},
divided by {W, 9} if the former is non-zero. If

the absolute value is still > 1¢'7 then {W, 97} are
set equal to the absolute value instead. This ends

convergence testing for the current iteration.

If convergence is tq a real roo‘t‘, then by this pro-
cess, {KK} increase negatively, as the appropriate
criterion is satisfied on successive iférations. If
convergence is to a real or complex pair, then
{KK} increases positively. Four such iterations
are considered sufficient for termination of the
iterative process. Accordingly, execution is as
follbws.. If the absolute value of {KK} > 4 then

a 'YES' branch is taken to point G—{3F] . Other-
wise a 'NO' branch is taken to point (< EI6).
Here, if {Q+3} # 150§ execution returns to point
for a new iteration. If not, no root could
be found by the above process. Message MS8 :

' COMPUTATION FAILURE

is therefore output to the teletype .and a branch made
to pdint in the 'I_NYéijt' component.

In the second phase it now remains to calculate the
eigenvalues from the results of the iterative pro-
cess: execution is at point (J—{3f]. If {KK} £
then execution proceeds to point EI7). Here
if {W,12} are negative a 'NO' branch is taken.
There is a real pair of roots. {W,97} are set
equal to the square root (as found by a BRM SQRT)

..83_

of the negative of {W,12} . Now, or if {KK} <f,
{W, 95} are set equal to {W,97} multiplied by
{Q}, and execution branches to point (EB
{W, 97} is the real eigenvalue of the original
matrix VARIABLE. o

If in the above process {W, 12} had been positive
a 'YES' branch would then have been taken. If
this happens {W, 99} are set equalto

{w, 18 {w, 7} - {w,93{w,8}]/{w, 11}, {w,97}
to {W,99}/2. ¢, and {W, 98} to the square root
of {w,12} - {W,97},2. Then {W, 95} and

{W, 96} are set respectively to {W, 97} and

{W, 98} multiplied by {Q} . A{KK+1} are set
equal to -1 and a branch to point (< EI8
made. {W,97} and {W, 98} ‘aré the real and
imaginary parté of the complex eigerivalue of the
original matrix VARIABLE.

The third and last phase of‘executlion is now
entered. An inner loop, performed once for a
real root, and twice for a complex pair encloses
the whole process. {Q+3} a counter indexing
the loop are set to unity. On entry into the loop,
first n-1 powers of the eigenvalue are calcu-
lated as follows. {W,21} and {W, 31} are set
tol.d and @.8 respectively. Then for values
of i from 2 to {K+1} s {W, 2@+i} are set equal

to
{w, 97} {w, 19+i} - {W, 98}{W, 29+i}
and {W,3@+i} are set equal to

{w, 97}{w, 29+i} + {w,98}{ W, 19+i} .

_84-

Execution now reaches point , at which
point {W,21}..... {W,2¢+{K+1}} and
{w,31}..... {W 3g+{K+1}} are the real and
imaginary parts of the scalar mu1t1p11ers of the

B matrices in Eqn. (3).

The sum of the cdluxhné of Q in Eqﬁ. (3) is now
obtained: eva'ch:colu‘mz_l of the matrix in the
V-TABLE is multiplied in turn by the real and
imaginary parts of the appropriate multipliers
prevmusly calculated ‘and sums of all the real
and 1mag1nary columns obtamed The result is
the e1genvector correspondmg to the eigenvalue
already obtained. The real and imaginary parts

" are placed respectively in {w,4a1}..... {w, 4g+{K+1}}
and {W,51}..... {w, 50+{K+1}}. {K+2} are then
decremented by one to show that another root of
the polynon‘ual is found and the order has de-

creased by one.
The eigenvector found is next normalized so that
the largest element has a unit mod‘ulu's‘,' unless
the eigenvector is identically zero. It now remains
to output the eigenvalue ahd vector calculated.
First either message MS2:

' COMPLEX EIGENVALUE

is output to the teletype if the eigenﬁ_alue is complex,

or the message MS3:

REAL EIGENVALUE

-85~

if the eigenvalue is real. Next the real part of
the eigenvalue {W, 95} is output to the teletype.
If the imaginary part {W, 96} exists, fhis is
output also. These are followed by a carriage
return and two line feeds. The eigenvector is
now output. For i =1 to {K+1}, the féllowing
are output: {W,4f+i}; {w,50+} if {KK+1} <4,
and lastly a carriage return and line feed. If
{KK+1} < g, {W,96} and {W, 98} are negated.

This completes output of the results. If

{Q+3} = {KK+1} it means that the inner yloop

round the third phase has been iterated the

correct number of times {once for a real
eigenva;luev and twice for a c‘omplex pair). If

" not {Q+3} are decremented by 2 and the loop

iterated once more.

Once the processor ma.kes an exit from the inner -
loop, in this phase of execution it only remains

to reduce the order of the polynomial in order

to find further eigenvalues, if any. A testis
made on {K+2} : if the contents have been re-
duced to zero, all eigenvalues have been found.

A ’YES’ branch is taken. A cérriage return

and line feed are output to the teletype, and
execution branches to point v in the 'INVert!
component. If {K+2} are non-zero thena INO!
branch is taken, and the ”order of the polynomial

is reduced as follows.

If {KK+1} are not negative, showing that the

eigenvalue just found was real, the order of the

-86-

characteristic polynomial is reduced by one, by
division by a linear factor. The division is
accdmplished by recalculating coefficients in
this way: for i =1 to {K+2}, the product
{TR,i-1}{W, 97} is added into {TR,i} . Execu-
tion now returns to point to find the
new dominant root of the reduced characteristic

polynomial.

If {KK+1} are negative, then the order of the
polynbmial must be reduced by two by division by
a quadratic factor, since a complex pair of
eigenvalues were previously obtained. The
coefficients of the polynomial are recalculated
as follows. {W, 99} are added into {TR,1}.

If {K+2} are equal to unity then no further cal-
culation is required. Otherwise, for i =2 to
{K+2}, {TR,i-1}{W,99} - {TR,i-2}{W, 17¢}
are added into {TR,.i}- . Execution now returns

to point as in the case of the real

eigenvalue.

This completes discussion of the 'ElIGenvalue'
component of 'GROUPZ!'.

INVert) The 'INVert! COMMAND is used to

(Flow Diagram 29.) = invert a square non-singular matrix. A
standard method using elemental transforms is
used. The method has the advantage that it requires
a minimum amount of storage space. For an
n by n matrix, besides the storage for the matrix
itself, only a further 2n ihteger locations are

required.

-87~-

Briefly for an n by n matrix the algorithm is

as follows. Two column n-vectors are defined,

to be used as pivot switches. These are initialized
to zero. A main 1dop is executeds n times. At

each iteration a new pivot is found and its location
recorded. The pivot is replaced by its reciprocal.
In turn the remaining elements of the matrix are
reduced, first the ones off the pivot row and column,
and then the ones on the pivot row or column. After
n iterations this pivotal reduction is complete. De~
pending on the final values of the p:'u:/ot switches,
rows and columns of the new matrix are interchanged.

The final result is the inverse of the original matrix.

Execution of the 'INVert! COMMAND starts at
point INV). Firsta BRM 'COPY' is exe-
cuted to transfer the matrix VARIABLE indicated
by the ARGUMENT to the standard output
VARIABLE . Next the row pivof switches,
{w,1}..... {W, 14} and the column pivot switches -
,11 {wW,2¢} are initialized to zero. 18 A
loop index counter {Q+2} is initialized to zero.

Execution now arrives at point .

The main loop is entered at this point. {K+1}
constitutes the dimension of the matrix: the loop
is thus iterated {K+1} times. At the start of
each iteration {Q+2} are incremented by one and
{Q} set equalto #.f#. Now all the ‘elements of
‘matrix in the standard output VARIABLE are

18 Here the W-TABLE is being used to store integer numbers.

-88~

searched to find one of largest absoluté value,
omitting from the search the i*® row if {w,i} £ 4
or the i™® column if {W, 1g+i} # ﬂ {KK} are
set equal to the row index of the element found,
and {KK+1} to the column index. The value of
the element found, the pivotal element, is stored
in Q.

. If {Q} are less than about 1¢-'7, then it is assumed
that the matrix is singular and execution proceeds
via a 'YES' branch to point ({>—{32]. Otherwise a
'NO' branch is executed and the pivot reduction

process continued.

The elements of the matrix are now reduced.
First the pivotal element OO(KK, KK+1} is itself
reduced by replacing it with its reciprocal. The
new value is also stored in: Q+7. Then two pivot
switches are set: {W,{KK}} are set to {KK+1},
and {W, {KK+1}} to {KK} ..

Next the elements off the pivot row or column are
reduced. From each element OO(i, j) in turn,
where i ;({KK} and j ;1 {KK+1} , is subtracted
the product ’

{OO(KK, j)}{00(i, KK+1)} {Q+7} .

Lastly the elements in the pivot row and column
are reduced. Each element excluding the pivotal
element, in row {KK} of the matrix is multiplied
by {AQ‘F’?} . Each element excluding the ,bivotal
element, in column {KK+1} of the matrix is multi-
plied by -{Q+7}.

-89-

A test is now made: if {Q+2} # {K+1}, then more
iterations of the loop described are required and
execution proceeds via a 'NO' branch fo point

. Otherwise a 'YES' branch is taken.
Conditional row and column changes of the matrix

in the standard output VARIABLE are now made.

Conditional row chénges are made first. {Q+2},

a loop counter, are initialized to zero. A loop
checking the row pivot switches is now entered.

At each iteration the following process is carried
out. {Q+2} are incremented by one. A check is
then made on {W, {Q+2}}. If the value is not

equal to {Q+2} a 'NO!' branch is taken. Row

{Q+2} of OO is interchanged with row {W, {Q+2}} of
00, and switch {W,{Q+2}} with switch {W,{wW, {Q+2}}}.
The test on {W,{Q+2}} is then repeated, and so on.
When {W,{Q+2}} becomes equal to {Q+2} a 'YES!
branch is taken. If {Q+2} # {K+1}, more row

and column interchanges may be required, and

a return is made back to the beginning of the loop.

If {Q+2} = {K+1}, all the necessary row inter-

changes have been made.

The column changes follow exactly the same pattern.
On the conclusion of this process, the standard
output VARIABLE contains the inverse of the
original matrix. Execution returns to point

of the DIRECTIVE SUBPROCESSOR.

If the matrix is singular, execution arrives at point
. Message MS7 is output to the teletype:

MATRIX SINGULAR - RANK =

90

{Q+2} minus one are calculated and output,
followed by a_cari'ia.ge return and 2 line feeds.
{Q+7} are set equal to the number of elements
in the matrix, and execution arrives at point

. All the elements of the matrix in the
standard output VARIABLE are set to zero, and
then execution returns to point ——-E] in the
DIRECTIVE SUBPROCESSOR .

This concludes the description of the operation of the four COMMANDS
in the 'GROUP{' component group of the EXECUTIVE SUBPROCESSOR.
The component group uses three routines that have not already been
described, all BRM's. The BRM SQRT will not be described here,
since the same routine is used in the SDS 940 FORTRAN LIBRARY.
Slight differénces in the two versions can be accounted for by

inspection. The remaining two BRM's are described below.
BRM 'FIX' (Flow Diagram 3f.)

The BRM 'FIX! is a routine for adjusting the
dimensions of the standard output VARIABLE in
the IDIM-TABLE. The call sequence is:

BRM FIX

[return location]

ZRO [address of location containing row dimension}
ZRO [address of location containing columndimension]

Both at entry and exit all registers contain garbage.
Operation of the BRM is as follows. First the row

dimension is obtained from its addressed location and
placed in'0506{~IDIM, -6¢} . . The column dimension

-91-

is then obtained from its addressed location and
placed in 0708{IDI.M, -6f} . The exit from the
BRM is then taken. '

BRM 'COPY' (Flow Diagram 31.)

The BRM 'COPY' is a routine for moving the
contents of BLOCKS of storage in and out of the
S-TABLE, or for moving them to a new BLOCK

of storage of the same size. Its call sequence is:

BRM COPY

[return location]

ZRO [address of location containing row dimension]

ZRO [address of location containing column dimension]
ZRO [address of location containing old BLOCK INDEX]
ZRO [address of location containing new BLOCK INDEX]

Both at entry and at exit all registers contain garbage.

Operation of the BRM is as follows. First the row
and column dimensions are obtained, and the number
of elements in the matrix calculated. Then elements
of the matrix are taken from the old BLOCK in turn
and inserted in the new BLOCK in the S-TABLE.

If both BLOCKS are in the S~-TABLE this process

is straightfo-rward. If, however, the BRM is used

to copy the values of a matrix from outside the S-TABLE
into the S-TABLE, say from the W-TABLE into the
S-TABLE, the old BLOCK INDEX must be calculated
in some way. For the purposes of this calculation the
S-TABLE is imagined to be extended in the core so that
it overlaps the core area designated to the W-TABLE.
The BLOCK INDEX is then the INDEX in the expanded

-92-

S-TABLE of the zero'® WORD of the W-TABLE.
Thus it is of crucial importance in any rearrange~
ment of the MAP processor not to‘change the
relative positions of the temporary storage TABLES
and the S-TABLE in the core by changing the
ARPAS coding involving the definition of the
TABLES.

On the completion of the transfer of the elements of

the matrix, the exit from the BRM is taken.

NEGate
NUL1 (Flow Diagram 32.)

The 'GROUPIL' component group of the EXECUTIVE
SUBPROCESSOR comprises two single~ARGUMENT
COMMANDS: 'NEGate',6 where the result is placed
in the standard output VARIABLE ; and 'NULILl',

On entry a preliminary section of coding common to
either of the COMMANDS is executed. A secondary
transfer is then made to further sections of coding
dealing separately with each individual COMMAND .

Operation is as follows. On entry at point GRP1
the secondary transfer index number is unloaded

and stored. A BRM 'LAB' is executed to check
the type of the ARGUMENT associated with the
COMMAND . If the ARGUMENT is LABEL-type,
the 'BAD!' exit is taken to point in the 'EDIT'
component group. Ifthe ARGUMENT is VARIABLE-
type, the 'GOOD' exit is taken from the BRM.

Next a POP 'WNLO' is executed to unload the dimen-
sions of the VARIABLE and its BLOCK INDEX in

-93_

the S-TABLE from the IDIM-TABLE . The total
number of elements in the VARIABLE is calcu-
lated and stored. The secondary transfer is then

made.

NEGate The 'NEGate' COMMAND is used to form the
negative of a matrix. The result is placed in the
standard output VARI_ABLE . Execution starts
at point NEG) . A BRM 'FIX!' is executed
to adjust the dimensions of the standard output
VARIABLE in the IDIM-TABLE to the same as
those of the ARGUMENT .

Each element of the standard output VARIABLE
is in turn set equal to the negative of the corre-
sponding element of the ARGUMENT VARIABLE.
A branch to point in the DIRECTIVE
SUBPROCESSOR is then made.

NUL1 The 'NUL1' COMMAND is used to set the value
of any matrix VARIABLE identically to zero.
Execution starts at point NUL) . Each element
of the matrix specified in the ARGUMENT is set
equal to @. 4 in turn. A branch back to point
in the DIRECTIVE SUBPROCESSOR is then made.

ADD

SUBtract

SKIp

EQUate (Flow Diagram 33.)

The 'GROUP2' component group of the EXECUTIVE

SUBPROCESSOR comprises four double~ARGUMENT
COMMANDS . The first two, 'ADD' and 'SUBtract!'

-94_

are operations where the result is placed in the
standard output VARIABLE. The third COMMAND,
'SKIp' never 'usesvthe standard output VARIABLE
and is a flow-changing operation. In the last
COMMAND, 'EQUate', one of the ARGUMENTS

is an output VARIABLE . The standard output
VARIABLE is only used if it appears as an
ARGUMENT .

Operation of this component group is more unortho-
dox than the others because the secondary transfer
occurs inside the loop iterating through the elements

_ of the input matrices.

Operation is as follows. On entry at point GRPZ
the secondary transfer index number is unloaded

and stored. A BRM 'LAB!' is executed to check

the types of the ARGUMENTS associated with the

. COMMAND. If the ARGUMENTS are LABEL-type,
the 'BAD' exit is taken to point —m in the 'EDIT!
component group. If the ARGUMENT is VARIABLE-
type, the 'GOOD!' exit is taken from the BRM.

Next two POP's '"UNLO! in succession are executed.
In turn for the first and second ARGUMENTS
respectively, these unload the dimensions of the
VARIABLE ARGUMENT and the BLOCK INDEX

in the S-TABLE from the IDIM-TABLE. Several
‘tests are now made to ensure compatibility of the
ARGUMENTS.

If the: COMMAND is not 'EQUate! a '™NWO! branch
_is taken to point. .. If it is 'EQUate! but

the first ARGUMENT is not the standard output

-95=

VARIABLE, a 'NO!' branch is again taken to
point . If the COMMAND is 'EQUate!
and the first ARGUMENT is the standard output
VARIABLE a 'YES' branch is taken to point

. At point if either the row
dimensions or the column dimensions of each
ARGUMENT -are not the same, a 'NO' branch

is taken to point —-E)] in the 'APPend' component
of the EXECUTIVE SUBPROCESSOR.

If the row and column dimensions both match each
other, then a 'YES' branch is taken. If the
COMMAND being executed is either 'ADD' or
'ISUBtract' a further 'YES' branch is taken to
point . Otherwise a '"NO' branch is taken

to point Y—{24] .

At point a BRM 'FIX!' is executed to adjust
the dimensions of the standard output VARIABLE .
in the IDIM-TABLE to those of the ARGUMENTS.
Execution then proceeds to point (.])—-EZ_Z] .. At point
(l)——@ the total number of elements in each
matrix VARIABLE is calculated, execution then

arriving at point GRPZ21

At this point the matrix operation itself is executed.

If the COMMAND is 'ADD', 'SUBtract', or 'EQUate’,
the indicated operation is carried out in turn on each
element. If the COMMAND is 'SKIp'!, {INDEX} are
incremented by one if the value of the first ARGUMENT
is less than or equal to the value of the second. In

this last COMMAND if the ARGUMENTS are not
scalar a branch to point —-@ in the 'APPend' com-

ponent is made.

96

Finally on the completion of this process, a branch
is made back to point of the DIRECTIVE
SUBPROCESSOR . '

MULtiply
SCAlar multiply
TRAnspose (Flow Diagram 34.)

The 'GROUP3' component group of the EXECUTIVE
SUBPROCESSOR comprises two double-rARGUMENT
COMMANDS '™ULtiply! -and 'SCAlar multiply'

and one single~rfARGUMENT COMMAND 'TRAnsposel.
In-all cases the result is placed in the standard

output. VARIABLE . On entry a preliminary section

of coding common to each of the COMMANDS is
executed. A secondary transfer is then made to
‘further sections of coding dealing separately with

each individual COMMAND.

Operation is as follows. - On entry at point
-the secondary transfer index number is unloaded
and stored. A BRM 'LAB'.is executed to check
the type of the ARGUMENTS. 1If the ARGUMENTS
are LABEL-~-type, the 'BAD' exit is taken to point
in the 'EDIT' component group. If the
ARGUMENTS are VARIABLE-type the 'GOOD'!
exit is taken from the BRM.

Next, two POP's 'UNLO' are executed in succession.
In turn for the first and second ARGUMENTS
respectively, these unload the dimensions of the
VARIABLE and the BLOCK 'INDEX in the S-TABLE
from the IDIM-TABLE . The secondary transfer is

then made.

_97-

TRAnspose The '"TRAnspose' COMMAND is used to find the
transpose of a matrix. The result is placed in
the standard output VARIABLE. Exeéution starts
at point . A BRM 'FIX' is executed to
adjust the row dimension of the standard output
VARIABLE to the same as the column dimension
of the ARGUMENT and vice versa.

By means of a double loop the elements of the matrix
ARGUMENT are copied into the W-TABLE, trans-
posing in the process. A BRM 'COPY' is then
executed to shift the contents of the W-TABLE into
the standard output VARIABLE . A branch back to
point of the DIRECTIVE SUBPROCESSOR is

then made.

MULtiply The '™MULtiply! COMMAND is used to find the
matrix product of two matrices. The result is
placed in the standard output VARIABLE . Execu-
tion starts at point . First a check is
made: if the row dimension of the first ARGUMENT
is not equal in value to the column dimension of the
second ARGUMENT, then a 'NO! branch is taken
to point —{_9____[of the 'APPend' component. Otherwise

execution continues.

Next a BRM 'FIX' is executed adjusting the column
dimension of the standard output VARIABLE to the
same value as the column dimension of the first
ARGUMENT, and the row dimension of the standard
output VARIABLE to the same value as the row
dimension of the second ARGUMENT .

98

The matrix product is now calculated element by
element in the usual way; the result being placed
in the W-TABLE. Finally a BRM 'COPY! is
used to transfer the result to the standard output
VARIABLE, and a branch is made back to point
in the DIRECTIVE SUBPROCESSOR.

SCAlar multiply The 'SCAiar multiply! COMMAND is used to-
find the product of a scalar and a matrix. The
result is placed in the standard output VARIABLE.
Execution starts at point SCA). First the
dimensions of the first ARGUMENT are checked.
If it is found not to be a scalar, a 'NO! branch is
taken to point —[9] in the 'APPend' component.

If it is a scalar, a 'YES' branch is taken and a
-BRM 'FIX!' is executed to set the dimensions of
the standard output VARIABLE the same as those
'of the second ARGUMENT . The value of the first
ARGUMENT is then copied into temporary storage.

‘Each of the elements of the second ARGUMENT in
turn are multiplied by the first ARGUMENT and
the results stored in the corresponding elements

of the standard output VARIABLE . Execution then
‘returns to point —{4] of the DIRECTIVE SUBPRO-
CESSOR .

REAd
PRInt
LOAd
STOre (Flow Diagram 35.)

The 'GROUP4' component group of the EXECUTIVE
SUBPROCESSOR is the last group to be described.

_99-

REAd

It comprises four single~ARGUMENT COMMANDS :
'REAd4', 'PRInt', 'LOAd', and 'STOre'. The first
two are concerned with input and output of the values
of MAP VARIABLES via the teletype, and the
second two with input from and output to a disk

file. On entry a preliminary section of coding
common to each of the COMMANDS is executed.

A secondary transfer is then made to further
sections of coding dealing separately with each
individual COMMAND .

Operation is as follows. On entry at the point

the secondary transfer index number
is unloaded and stored. A BRM 'LAB' is
executed to check the type of the ARGUMENT
associated with the COMMAND . If the ARGUMENT
is LABEL-type, the 'BAD' exit is taken to point
in the 'EDIT' component group. If the
ARGUMENT is VARIABLE-type, the 'GOOD!'
exit is taken from the BRM.

Next a POP 'UNLO' is executed to unload the
dimensions and the BLOCK INDEX in the S-TABLE
of the VARIABLE ARGUMENT in the IDIM-TABLE.
The total number of elements in the VARIABLE is
calculated and stored, and the secondary transfer

made.

The 'REAd! COMMAND is used to input the values
of a VARIABLE from the teletype. Execution starts

at the point . Input of VARIABLE values
proceeds row by row. Input of each row corresponds

to one iteration round the loop to be described.

-100-

First the row index is set and a "bell" output to
the teletype. Execution arrives at point ,
the start of an inner loop which is itérated once
for every value i‘np_uf by the user. At the start

of this loop the INDEX of the WORD in the
S-TABLE where the num‘ber'input is to be stored
is obtained. A BRM 'IONUM!' is then used to
input the numbér from the teletype. If the number
is unintelligible, the 'BAD' exit is taken from the
BRM to point. . Otherwise the 'GOOD'
exit is taken, and the number and its términating

character are stored.

Several tests are now made. If the end of the row
has been reached the terminating character should
be a carriage return. If it is not an error has
arisen and execution proceeds to point ¢ .
If the terminating character is a carriage return,
a 'YES' branch is taken. A line feed is butput

to the teletype, and a check made to see if all
elements of the‘ matrix have been read in. If

they have executioh returns to point in the
DIRECTIVE SUBPROCESSOR . If they have not

execution returns to point ready for

the input of a new row.

If the end of the current row has not been reached,
the terminating character should be either a "space"
or a line feed. If it is neither an error has arisen,
and execution proceeds to point . If the
terminating character is a "space" execution pro-
‘ceeds directly back to point for the input

of the next element in the row. Ifitisa line feed,

a carriage return is ob,tput to the teletype before

proceeding back to point .

-101-

PRInt

If an error occurs in the input of a row of the
matrix, execution reaches point .. The
remainder of the row after the number containing
the error is input character by character and dis-
carded as unusable until a carriage return appears.
A line feed is output to the teletype, and the loop
indexing reset so that the next row input by the
user is input as a repetition of the row in which

the error occurred. Finally a BRM 'ER1' is
executed to print out an ERROR MESSAGE, and

execution returns to point REA

The 'PRInt! COMMAND is used to output to the
teletype the values of a VARIABLE . Execution
starts at the point . Output of the
VARIABLES proceeds row by row. Output of
each row corresponds to one iteration round the

loop to be described.

First a row index is initialized, and execution
arrives at point , the start of an inner

loop iterated once for every number output to the
teletype. The pointers of a temporary storage
string are reset. The INDEX in the S-TABLE

of the WORD to be output is obtained, and the value
taken from the TABLE . The latter is converted to
character code form and stored in the temporary
storage string. The exponent part is stored again

separately.

The characters of the string are now output in
turn to the teletype until the "E" denoting the
start of the exponent part is reached. If the end

of the current row has not yet been reached, a 'NO!

-102-

STOre

branch is taken, and execution returns to point
for output of the next number. If the end
of the row has been reached a 'YES' branch is
taken. At this point the fractional parts of all
the elements of the row have been output, and all

the exponent parts have been temporarily stored.

The exponent parts for the row are now output

as follows. A carriage return and line feed are
output to the teletype. For each element in the

row in turn, the processor outputs to the teletype
three "spaces", "E", and the appropriate exponent
part. Two carriage returns and a line feed are
output to the teletype. All the elements of the
current row of the matrix VARIABLE have now

been fully output."

If all the elements of the VARIABLE have been
output, a 'YES' branch is now taken to point
of the DIRECTIVE SUBPROCESSOR. If nota

'NO! branch is taken and execution returns to point

to output the next row.

The 'STOre' COMMAND is used to store the values
of a VARIABLE on a disk file. Only one VARIABLE
is stored on any one file. Execution starts at poiﬁt

. On'entry a BRM 'OUTF' is executed to
make a disk file ready for output. If the user's
attempt fails, the 'BAD' exit is taken. A BRM 'ERl’'
is executed to print out an ERROR MESSAGE and
BRM 'OUTF' re-entered. If the file is successfully
made ready, the 'GOOD' exit is taken from the BRM.

The file identifying WORD 314631468 , the number of

-103-

elements in the VARIABLE, and the number of
columns of the VARIABLE are successively

written on the file.

Each of the elements of the matrix VARIABLE .
are now written on the file in turn, row by row.
The file is then closed and a branch made back
to point of the DIRECTIVE SUBPROCESSOR .

LOAd The 'LOAd' COMMAND is used to load the values
of a VARIABLE from a disk file. The COMMAND
is complementary to the 'STOre!' COMMAND .
Execution starts at point LOA) . Onentrya
BRM 'INF' is executed to make ready the disk file
for input. If the user's attempt to specify a file
fails, the 'BAD!' exit is taken. A BRM 'ERIl!
is executed to output an ERROR MESSAGE to the
teletype, and BRM 'INF' re-entered. If the file
is successfully made ready, the 'GOOD' exit is
taken from the BRM.

Next, three tests are made in succession. If the

first file WORD is not the correct identifier; or

if the second file WORD does not match the

number of elements of the VARIABLE to be given
values; or if the third file WORD does not match

the number of columns of that VARIABLE then a

'NO' branch is taken. The file is closed, a

BRM 'ER1' executed to output an ERROR MESSAGE,

and execution returned to point to specify

a new file.

If the three first WORDS on the file are all correct,

a 'YES!' branch is taken. The values of the elements

-104-

are read in one by one from the file into the
specified positions in the S-TABLE. The file
is then closed, and execution returns to point
of the DIRECTIVE SUBPROCESSOR .

Only one routine is used by the 'GROUP4' component group which
has not already been described.

BRM 'IONUM!

The BRM 'IONUM '.v-is¢ used to input a floating=-
point number from the teletype to the A and B
registers. It is idenﬁcal in form and operation
to the BRS 52 and so will not be described
here. It was used solely because BRS 52 was
not in working order when the MAP processor

was developed. The call sequence is as follows:

BRM IONUM =
[error return]

On entry all registers contain garbage. At exit
the A and B registers contain the number input,
and the X register contains the character with

which the user terminated input of the number.

This concludes the description of the components of the processor
comprising the EXECUTIVE SUBPROCESSOR. It is also the end
of the description of the entire processor. It should now be possible
to identify in a symbolic listing of the processor, the purpose and

operation of any particular section of coding.

-105-

branch te
DIRECTINE
SUBPRACESSOR

V

BRM STAR

check Sor '#!
npuk $iesk 3
chorackers

XIT1 TEXIT2

‘

slphabeXic
choracter
?

et

8} =3

nowme skork wikn

set £QY= name

" eharocter

ie "'1} = itrminn.{ina

BRM _LOOK

\oa’k BP nowmd
n ISYMB-TABLE

BAD 1GOOD

sek fiSYMB LTI+ 1T
tﬂ‘ug\ 4o
VARVABLE wnowmae
and (A= &um“nq*mx

enarockar

T

—]

branch e
‘APPend’ componenk

sek fERRY}=H

1

BRM _ DIMS

Wpuks dimensions

‘of VARIABLE

GOOD | BAD

Flow Diagram 9.

{2]

adding to the LIST of VARIABLES

Flowchart of VARiables operation for

o)

sukpuk “Sadt” ke tl.\l\‘?'-
inpuk $ierk
Snotacker.

CALL SEQUENCE:

BRM STAR .
[EXITt return location]

EXIT2 return location

—

‘ inpuk 3 remeining
sktore zZero's n’ charackers oF
WORDS oF INSTR- Firsk tnpuk WORD
| and PTR-TABLE
.- |WOEKED by LINSTRRY
6 . store Whwo\s \ORD
) ; | and \oak Sherackar
AT EN TRY: sukpuk “”';.‘\‘ rakury . tl"srn.)b \.\-\ :
HinaFead' ke kddiyye
{AL{BL,{X} garbage il

AT EXITL: C EXIT2 |)

{ALIBLIXt garbage C EXITY)
AT EXIT2:

{8}, {T} WORD of three characters

xt ¢

Al 3rd character

Flow Diagram 10. Flowchart of ‘BRM STAR for checking first
WORD of anh EDIT mode expression

CALL SEQUENCE:

BRM DIMS ,
BAD return location
[GOOD return location

AT ENTRY:

C DIMS)
{A} terminating character after VARIABLE hame
<] {8}, {xt garbage '

Ai‘::;f:;::::’:::% AT EXIT:
name in £43} {AL{x} garbage
{B} ERROR reference number or garbage

I
| sl

st {ERR}
=la
sct . 7
AT,T+A1L ke
i nuambLr SG‘\

ferry=9 [

Sek {'\'}{ gr g

b —

A

?\o.r.;l. el and (YFinrow
and Colamn pesikiont
T Lim, fusTival

V

xone tharking INDEX
0,04, TLSTE, wdd
vrd\"* id {1 +1}L£T }

(GOOD EXIT)

Flow Diagram 11.

e Xy 3;

input all ‘a\hﬁ-ﬁn‘
haracters a3
sk wabil
“eatrioqe rekurn’
~ppeacs

V

eukpuk WZwneNaed”

) e
C BAD EXIT)

to ‘L;\t%.“l.
does . ' sek -
resw\k Y ES
Sndic .}.; 5“':':“- {_Bl
<z BRM _ERL
' !NO- priak on tc\si‘ylv
EAROA MESIARGE
store feBul in etaranced o LERRE
LENDI+1L and o | A=
O 0t ivAm iﬁusf p+ad —d
oukpuk *Vine Fead” {5
ke balthupe; +*
[\neramand SAVETY Yoy om0 :ﬁg::::’:;:::} *11}}
‘a 180

Flowchart of BRM DIMS for input and

coding the dimensions of a VARIABLE

Com D __
%‘——{__)

BRM LIS
(I) eukpuk VARIABLE
LIST ko kelekype

branch to
. DIRECTIVE SUBPROCERSOR

CALL SEQUENCE:

(:1 LISt r;),'
"V z "BRM LIS1

[Feturn location]

mtialine indax

counter @ ~be
O—ie] AT ENTRY:

V A, LX) garbage

| aubpuk indexed WORD
n ISYMB-TARLE
Ahen oukpuk 3 "spaces” o
AT EXIT:

i §7 %

unload dimansiont
and Tteskl

Z& INDER v S<TERRLE
Nram \nderxed

WORD 'n \DAM~TABLE

Iy

sukyuk ~swa imansion,
Yeomma’, ¢oluwmen
dimsntian, end CR/LF

v

inettmeant
Tmdax counker

T

Flow Diagram 12. 1 Flowchart of calling sequence
I Flowchart of BRM LISl for printing a
PROGRAM on the teletype

C Lo)

CALL SEQUENCE:

set {8}
= 0-Oybiin,x}-1} UNLO [addr. of storing location)
and LAY :

=0g-Ogfibin { X1}

put {.B}', qiving P .
St e, AT ENTRY:

in addressed

ocokion
= (AL{B} garbage
‘l} , {X} INDEX of WORD of IDIM-TABLE
put O50.{8l, to be unloaded

3'\v1ni rfow.g\ne
in oddressed
lveokion plus one

AT EXIT:
i {AL{B},{Xx] garbage
puk Oq0{A}
3;";'“3 column sine
in addressed
locakion p’}us +wo

(EXIT)

Flow Diagram 13 Flowchart of POP ‘UNLO' for unloading
3 WORD from the IDIM-TABLE

sek {ERRY
= {8}

Flow Diagram 14. Flowchart for APPend operation appending
INDIRECT STATEMENT +o a PROGRAM.

LINSTRX}
< E

'YES'

BRM PGRM
inpuks and codes
INDIREST STATEMENT ko
LNSTR,OINSTRXE} and

CPTR (NS TRXY]

[EXIT 1 TEXIT 2
V

/

~ Yoronch to
DIRECTIVE SURPROCESIOR

Q P(iRM)

]
—<}

y

BRM STAR
check o ‘¥
npuk Firek 3
ehetackurs
XiT1 [EXIT2
<,L

choracker

pplovs . CALL SEQUENCE:
?
C et A BRM PGRM

< \ YES [EXIT1 return location
DRM___IPC_ & [EXIT2 return location]
;\::;:th;;: ax . ‘ ZRO [dddress of INDEX
- type . .
[EXIT2 [EXITL g : location]
2et £Q%2 result AT ENTRY:
BRM—LOOK Y? {al,{8Lix} garbage
\oeks up Og0,
ofF PTR-TABLE
) Sar makeh ik QL AT EXlT:
BAD | 60‘89____<].__ {al, {Bixt garbage
%] PGRI

sek CERRE=D Z&

qet cadecuss oF \ecakian Praviding
INDEX tn INSTR= and ‘PTR-TABLES
and ingerk in BRM-INPUT call sequence

BRM INPUT

Tnputt STATEMEN
o DINSTR, {H XYY
and TPTR, E 2 %}Y

-

GOOD | BAD

set LABEL {Q}
o OO, (PR $x %L}

Flow

v

incramenk

INSTRX}

{ EXIT2)

Diagram 15, Flowchart of BRM PGRM coding an INDIRECT
STATEMENT into specified WORDS of INSTR-
and PTR-TABLES.

Q ENTRY)
(EDIT)

V

unlood and stare
secondary kransSer
namber

Set ARGUMENT

counker Q= ¢

'“‘\ \f&v\:‘.\'\ ie
'APPend’ compenant

Y

BRM LOOK

locks up ARG
in 050, oF PIR-TABLE

& YES | NO
/ EDI
stare Fesull '
|—<—— n
v iv,5aQi} sek (B} ="T
‘!»:Flmtn* i.Q}
make ic‘wﬂéwt‘*.\'sv\iil\‘
INS 1]2]314 COM
— J L ~
v - o J R
set countars ')
ii: :3?: {{:;%11 s pveemiaivoar |WDEL _ ek $i¥ference oF
value oF ARGUMENT COMMENT string
yoinkars
branch o B 42" b eanch Lo
'APPend’ compenant DIRECTIVE SWBPROCESIOR
sekvraisivaaied
: L Nﬂ {; i sek {ERRY=1P sek
sek: LINSTR, 63 O S PTRITHTY
and TPTR, $1= @ = d\$Serence
set LiNsTRXT-T}={insra} Ix}-2} \l] l 4 l ¢
{m’{x§'1}=iﬁ“’{x}‘2} ZS Qw\q:mgbn.\\" o
ond 1A}=1R}-1 2ok LS TR ITH =HINSTR, IT +21} tdekyye
Z& end LPTR,ITI = 1PTR, { Y +a}} v
v inpuk harockars ko
Fhring in PYR-TABLE VR
\nerament vt umitf*lz S carrioge P.:u.fvv u‘.‘:‘_q.r$
oc "R chMaractes inpw
BRM PGRM add o ce.rr'\w\g Y SR,
- inpuk and <ode - - T o Ehe X Tng
INDIREST STATEMENT ko :) oe s]
Linisv o §v vajf iPTR §T 2233 NO freay= @ YES ¢
2 7 . .
weremand [EXIT EXITl * buﬁ:?m‘c VimeSead
j l £ TS Nak
j ;.T*'a-l--«\i'\"3} v Yadakyypa
inerement Sek LINSTRXE l
DNSTRRE =1NsTRIE+ 1} 4
Yevkieliza For
[oEL bleck: sat brandn ko
3 Ireif=iveal DIRECTWE STUBPRACEISOR

o D

Flow Diagram 16. Flowchart of INSert, BRAnch, DELete, and COMment operations.

INDEX TABLES widh
XL mkieline = -u3

= R
BRM __WDS

oukpuk ke is\t&‘?t
COMMENT ¥ any

4

BRM PIC

canvark wnd subypuk
STATEMENT LABEL

V

euhpuk e ko ‘\'.nhx«\"

3

set: [T+a} = 0r0 TR DG} CHEKNUNBER
= 'R PO
freat =g ARGUMENT :M';.’.:-‘

fFra 3 =0 05uimsTw x4} INDER
iRt=o,- Q,SJM"R,{X}}

\l\ bfmb‘l .0

DIRECTIVE SURPROCEIIOR

PR1

seek tue VeShmotk '
ockal diqiks and . qek
ragpiece the revk i“-‘_‘“n“""-‘}
exelusive or
A \‘] C ik £T43% :
o deleke sheck s
BRM___PIC Ryt
canvatl snd aukpul
ke ka\tkaye o3 LABEL
i\“g ARGUMENT adspuad akove Lo
Z . %t\l\"ﬂ.&un:.ﬂﬂ.\l
vekwrn, Vine Seed
P s R T S o l
ineramenk TT 03}
ToLONLe ﬂ.ms‘.n'm\
acke) X\"\h

——— yes

v

Thart now ARGUMENT
counker TTealsl
ek LQLE=

op-0, NsTR, EXT}

v

2ek LA = Lwe
slanWtmaal estel
i\“.h‘sﬂrm N and

Taplace rask

ok 1sYME -IARE;

WAk onp dharedac code
et aund e Sl
o, s ewlipd dabt\dhype
neroment T+ 3%}

Flow Diagram I7. Flowchart of PROgram operation printing on
the teletype @ PROGRAM of INDIRECT STATEMENTS

Q ENTRY

Y,
BRM_OUTE

reod

oukpuk File

V

werke av i\ e
File ldankiTiae

ond £INSTRXE

V

eikiaNive X3
o -~ \.3

caleulake and
wrike an ¥i\e
tate) number
& COMMENT

charackers i ;

weike an File
COMMENT
narockers vn
Anress ans \WORD
ak o Rivme Srom
CYAB~-TABLE

V

weike anSN\e fa8T)
sk (XY= -up

weilke on B\
LnsTR, (X1} and

{Prw,(xi}

'YES 1=

fLsTE
?

'NO A
- weike on Fhe
:\os‘c $1sYMB X}t and
Tile % VBiv, {_X}}

3

NO'

‘orench Lo

1] kY
aurament YE S
HELNS
0t 5
DIRECTIVE SURPRACETIOR

7

Flow Diagram 18, Flowchart of SAVe operation for storing a

X g
PROGRAM and its associated COMMENTS and
VARIABLE LIST oh a disc file.

1

~<}

C OUTF)
& .

Qm\cyu’«. mersoge
™MsSs

‘o tr.lc:tn.nn.

L vead outpuk
Filename

GOOD | BA

load File

BRS 19

open eu.\-.?.g\-_

File
output ‘cn.rrlo.t}e

GOOD T BA
return linefeed’ set {ERR}'-‘-g

tﬁ' “'.AL‘L\‘PQ_)
output Lo taletype
EXIT ERROR MESSAG
referenced by
S ERR}

L____{>_4

CALL SEQUENCE

BRM OUTF
[Feturn location]

Flow Diagram 19. Fiowchart of BRM OUTF readying a

disc fie for output

Q ENTRY)

—+ O REL

' sak CINSTR DAY
Br?..':‘ 'u]\t{i and TPTR,EXTY
%'3:. C\a.: -\:.
- eco

anhpud Lo kalakyrel
ERAOR MESING&

cafrecenced by

LERRY reed nank 2T

sak LINSTRX}s
WORDS nke

BRM E Rl acnt File WaRD
Tubkresdt ent fiNsTR, IXYE
sk EX}= -W3 wnd T TTR,IXEE
{ £l H N
‘st gxwal . 'YES
=9 » i

werament LINSTRRE

St‘l e . Bu onL: \'!.0-;
CTAB, '\"’3} vk ezt ' Y H
S.q‘u-g\’iL‘. } [£T v 2} an ‘i.r”} ﬂ numeer o charectecs
” ‘::.og\t‘;.' ‘e z22r0 COMMENTE Sram
Sheinko i‘l’ 01‘%
sk
jeraB NTe31}

\neremank cetel sek TarvsTy =
£re3k vy one 2 Seinm poiters S0 WeRD
sesireal Foc 1et EX}= - W

Aheee cTAR-TABLE
st Divvme, X3
and L10IM, {13}
close File; equel To zare
| sukput
masreqe MS1Q ; td nexk 2
La kalelyype ‘e WORDS
nlea 15NN, {X}}
BRM_ LIS amaliom, It}
huhu\'. VARIARLE Branch te
LET be BIRECTIWE
Yelitgye SLBPROCESSOR ek LQY=iusT}

Ahan
fLisvi=-Lg

O~RELD)

inpuk charcadlecs)
Sl carriage

outpul mestans

'—D‘ raburn appeats
311 te baltkype ety fime Seed
e de\akype

Epuk o ka)
[DEeme i+l

e.nd SV Lnpuk
o tharacker o

R},i—r *:}
BRM ER1 BRM DIMS
asuwbyad Lobald 5 X
ERRoR nux:}':‘ nyw rans <&
Samnes | A | S
—t ' BAD_1GOOD

Flow Diagram 20. Flowchart of REStore operation for
restoring @ PROGRAM to core from a

disc file.

e 3

<
) - CALL SEQUENCE:
outpul messoge .
'FiLENAME' BaM INF
to *.Q.\e:\:-“:m.

[return location]

BRS 15

read input
filename

GOOD [BAD

BRS 16
open '\n‘;u:h
File

GOOD | BAD

oukpuk c.a.rr'cm}o_ reburn

line feed to te\dun;c. sek £ERRY=Q
BRM ER|
vk o Lalek
E X l T :Rﬁ;‘t &‘SQD!TP.
referenced b
LERR

I

Flow Diagram 21. Flowchart of BRM INF readying &
disc file for input.

Crn D D

store {A}
and {8} CALL SEQUENCES:
\I] (i) FLOX [addr. of location
containing lNDEX]

sek {A} = contents
of addrassed \ocakion (ii) FCAX

m*.\?\li Ll.x & Q-ﬂé
puk in X rc.ck\s"cc.r

v

recover or'\ci‘mn.\

A} and LB}

(EXIT)

Flow Diagram 22. Flowchart of POPs FLDX and FCAX
for getting INDICES in TYPE I TABLES.

(.CALC .)

subkrock one From

row index, multiphy
by column
dimension

4

‘odd column
index

\/

CALL SEQUENCE:

CALC [address of location
“containing column size]

AT ENTRY:
{A} row index number
{B} column index number

AT EXIT:
{A} INDEX in S-TABLE

{8} garbage
{x} not used

Flow Diagram 23. Flowchart of POP CALC for computing

the relative

INDEX in & BLOCK from the

row and column indices of the matrix.

(l ENTRY 4:)

V
BRM___LAB

check ARGUMENTY
a3 VARVABLE -\-.\1?'.

GOOD | BAD

Y

71
\"\ Bbranch ko

‘epvt’ ;bm?onu\\. qrowp

se XY= INDEX
Qg NQ"A .\V\
ISYMB-"TABLE Ster

one Xo e dd\eked

fa}=o,-olmm ixt-2%
Q+1}=0,- 0 Lo O3 - 1}
{T}= 3 T%ecence

=

~eplace fi5vmB,X1-1}
wikhLisYne,ixt}
wna LiDim, {x}-1} A
AN DIM, (X3 -1T)
F Lo, Exiie g

or ‘ sXharuite

Jeswbtreck 1
Seam fL13TY

V

Yoke ertries \w S-TABLE i’eo.r\'w\‘
ok WNDEX iQ*l} +1 awd moue wg ko
INDEX $QGF+1 m Rurn Bl 2nd <F

used park o “TABLE I\NDEXED oy
§ ENDS +11

inetement

Xt sy
<8

sek {ISYMB,$}
and L1DIM, PE =P

AUWBPROCESIOR

Flow Diagram 24. Flowchart of OMIt operation deleting a
VARIABLE from the VARIABLE LIST.

% CALL SEQUENCE:
et
U BRM LAB
{r+3) [Feturn location]

branch te 'EDIT'
comeongn‘k qreowp

£wo's complement
{T+1} and {T+a}

AT ENTRY:
(A}, {B}iX} garbage

\/
AT EXIT:

1 {AL{BLIXI garbage

Flow Diagram 25. Flowchart for BRM LAB checking the
type of ARGUMENTS of a STATEMENT

store sec omén.n,

iraniver numboer

v

BRM LAB

ctheck ARGUMENTS
o8 VARIABLE - kype

GOOD | BAD

POP___ UNLO

wnloo.dt dimensions ofF
ARGUMENT and stack)
INDEX 'n S-TABLE Srom
ADIM - TABLE

[

// \rﬂnﬁ&\'\ *0

' E“l'l‘ Gom‘ohtn*. \fgu.'?

s ’ daes ' 3
NO Vﬂl?;t\-l Y ES ’v;r‘..'h';an
| sek §BF=F Qe N Sy

Sqare

L\ -n-%r\u ?
' g
branch o NO

'APP’ companant

BRM FIX

BRM __FIX

adiust dimensiong in
IDIM-TABLE +f

stordard sukpuk

\ﬂ'\u.si Aimeaiions in
'DIM-TABLE &

stardard oukpuls

NARIABLE VARI\ABLE
| S T—
make %c.enni.o.ru‘
+ransier
ae la |3!4- DIA
Sum all dicgonal
12 1 e\tments oF ARG LMENTY,

Y\Mm‘ resulkin 13t
emenk a¥ trondord
aukpuk VYARIABLE

o

branch o DIRECTIVE
SUBPROLEISOR

Flow Diagram 26. Flowchart of GROUP® operations

EiGenvalue, DETerminant,

and DIAgonal sum.

INVert,

(DET)
v

sek rasulbin
Q=1.¢

V

BRM _COPY

capy ARGUMENT
inko ttandard

sek TK+1} =
dimension -1

4 IKK}= @

inceamank £XKY
byoem; 1-}.
Savileq l
|
T
:bfm -.\ib\u\.l-
4& valus oF OO0 (K\(’ K\(‘) l
add go\u-mi@?si
& QO Lo caluwn
§KKY «F 0O Tiec e
A +IRKE; incrament
1Q+3% oy ane
'N o'

B

Y

Y

sed EXK+1}
equel ko £ XK}

TIRUEEE
\/

inerament

{XRe1} By ene

codeuwlake and thare
foo (KK, kK)} li""(’“‘a“

v

mu\\\r‘-\ %Y f_KK‘ b.‘
skored rokis, ﬂ\.\.."-'.
and 0dd ‘nke row

ixx+1} oFf o0

add all

diaqena)

elamenks ——D Aendard
OO and ploce
resuttin @ adipul VRRIELE

Q in

Pace rasule

4&

1
"} = ' Y ES
~ <+
sek skomdard
aunkpul VARIRBLE
e $.9.
.“\T"~ m..“y‘l..
™MEH
4o Lalekape
Branc be
PARECTINE
SUBPROLLESOR

Q

13
%0 (1,1)
Nafy S\
(‘e;-)

Flow Diagram 27. Flowchart of DETerminant’ component for
calculating the determinant of a VARIABLE.

Xidpew 2aenbs © 40 S404321u2012 pue saneAu2bI2
2y4 buigelnojes uoy uolyeuado 2N[PAU29(3 4O [JIPYOMOly 82 Wedbeig mo)y

813

T-=
< {Teantes

A

13]
% <} <
Prfual oxw futay =3
L' mIiT-tua g’ mite-1"va3
e ~ilewMiiz-v'n
E+NY ox 1=t ooy ePe feanlogeat avy

=T R\TISDA RSOy

{3 va s

={su‘ME ¥

ot b e
.vlvlu..\lﬂ lbf
- 6% gndavel

{

ns3a hq
e gsmeve

Ptepr'miveimg
§TeNL9T 1=L 4°8

-OZ.

oM

QUBL Wy

=3 ywdgme

fuamges eerasen puw
g >Ireuntsi fragsml
1tedn My dhrpy

fTemn}or t=1 o0

L
)

TSI BaNRE u.—.m + ﬁ S}

£

EQR DL DI B
PUO vunra sherssoy
24 qn (2% oy gmdawe)

fARIMmE vabhy
P} ey #!PJ.!Q

331 T8 A% WRlaLrDW QU
ITeMY o T2 2oy

A

q\l HYIEany Prowssp _

w

fre ga‘mi

A - T AR freatete MY
ewe frednMi

o - €)Mt Sraoig e T ‘M
freniore=l oy geo
11T+ M3 fra g5 MY
Tondrdtmisiiedin‘ml s
jouimoyen op §Tanor g=t 04

A
Ce

! 4 JlePrimE 4o doon
V -

{se'MmE
2Ry oy gndgme

Junrmlias Mz e mi M

={1+$E M puo
frernioeMi-ftevl M LM
=11+g4T'MT 1o

{1+%3 =% =1 503

csw _,
MWMMPJE MN ; ¢
» Sh ok 4 H
= yhagne
i ¢ =l mzes
1 ={1eMiyee

1

Y

FERSLLY R
100 3INBNOS
Frd gue fipobru

fue'™m2

Yy
o vpiare

ON,

]

Tue =3 Fa prypdegyme
{9353 yovb2 {su'™lyes
fan ™y ba prydiaine
{073 = 1>vbe {apiMyyes

1

el ™M3-etsm) &
LOOW_ IUYNDBE L fAG MY
del/ive ™= ity s

in‘:mi ,
foedin'ei-{ Mg ten uu*.fr iy

FTEPS %
fle'™g yes
*—.’F.b WO ‘4&1?
SR OO
={ue'm} s

A

11 MY

faue by M
I Wewmrang

T Met
et ™l=
1961 mizee

huehq Iust

FUBWBAIUY

e M- L8 mi{grime

RIS N A

.v*.d/l._ > /00

= Aoy avs

{¥-tne oy it pndare fudg
{20 o T2 wosy wmsndfR+0t MY 378

fE+ 08
iR+ WS

asw thosaw
PULE A
°% AR

—142

T=lrenny yos
fauo d..J mM...a.w FurwoIIU

B
62D

FNY SR Ay 48

FAOW PUT LINY 1)

n._.xw...m«.,)w »cr

oy o P91'MY
& $= fan‘m3 3os
@ ={e+OIr {an3 3es

[\
P13

A

e wodwoy AITANL,

‘/—/ o} youv.gq

13

ANIUNOUE 4 DDSIRNP

=§T+nz2 =Ireng Bl

YUd yo (eRliae weo

BIAPL~M v Fopoasd Kiagew

22 Linawnony XoFow griewacy
fa amgpi-m o nt xagew hdamwead
ENBBASA B xaxewm 4o feu0d
wwnies oRul IIAPA-M B X—.L.«ﬂ‘.
£° Suwmped \UR PP I3MABI-M UL
uv &..Ldn.dec YR T W‘.ﬁc.d.e..vzd /dIOAUJOZU
MR 40 WPoe ox {fs«oiiuil ee

.g V

gz OUﬂ FaYA-A C.. x’.buad_).

4> feso} wwhies 9z T{geniibond,
ba prpine 3tmui-o oug EANE tadide's
WG anf-_\vs”d ’dtﬂrauﬂ ..-Aj IWD s ad JJJ.

19 T auy o3 T fsastaay s

7

‘@ =g+ ua3 ¥
Ml.:o ﬂdﬁ wm.fow J.SS&UC—.

¢ = {e+03

1IFRUNOT JL VR Iu

i

{o} Ra Bueinp
hq avEur-m u oo
49 FIUBWBR 1P LI ou

i
(13)

NTses i s IFON
puw asazeash 2w senyon
PFUSEQT Prou™ SFuB M
§° uOTW YR \MINBO

PT =14 us30s

INAYL-M Oguy
Lemnoyy hdos

AdOD Wig
A

913

(INV J

v

BRM COPY

capy ARGUMENT
ko skoandard

aubpuk ¥ AR AT

Sari=1 0P sek
fw,it=¢ ,
sek {QFAT= &

? <~

nerement i@ +at \.s
ome;set £Q}= §-¢

v L

sSeorch all tlements Sor one
oF moximum sbsaluke valut,

Om'-‘.v-n‘ YEn rase oF elamenks
R A o} # ¢ or 3kh column oF

Qamenks 1§ i_\n,l*-],#}* $:
ek LXK} tquet ka row
Tndex and {XK*1} equal ke
Q&\u.mh Index & Q.\tmq.v\\'.

5 ound; 2ek L@ aqual 2o
velus of element.

oukpule mesiaqe
87 tao balekyvpe

i

5&\!"&&‘ ant Sram

La+2} and sulpud o boles
Ayye,Faleudd by o currio
rekurn ond ud Vine Seedd

y

sekta vl equed o
Ao Gs' .-\'.M\'*-‘

o makeix

27 v

] et skandard aukypul
VARIABLE ko nd) mekein
teme dimgntian ad

akein ARGUMENT

‘-fcm:\qj:

DIRECTIVE SURPRQCESSOR

y

2k §R+T] and 00{ku)k +1)

Nae 1.p/o0 (xx, ke +1)

2t EW KK ba frK+i]
andtw K H1E ko LKKY

v

sulkrack Sram cadh dament
006 (i,]) n kuen oFF row
LKKE ond column TR+ 1]
the product .
00 (xx, Mool XK+ TRiav}

waldl y\‘ Atmantt on Caw
Ixxl by 1A} malbh '*
Demenkis on calumn 1‘“(*1}
hts‘{@"’"k‘, buk da waek

henas edemeak 00(KK, X +1)

st fQea}=g

TneCament

{Q+at byone

I e
| P
[w:;;‘»a,“ | Y ES'
=ia+ag
?
‘NO'

et u-q.\n..n‘\ rew§a+al
o 00 Wikth cea

e, farall oFf 0o

V

% ~

‘NO
are N N
tavay YES:
=ik+1}
2
s fQ+3t# @b
6_
incremenk

1Q+3T by one

] '|n*.!.t'r.‘-v.n‘t AR 3 :.‘}
and TWIWI® +—,\n}

___<}_—_————.

ot
ta+3}=

@ity

"N*l"t\!.‘\“ c<o\umn

fa+3} oF 00 Wikh
codumn W4, fa+} +19}
of OO

V

ik eccheange §13,1Q43} 41
e\ a3+ 1T 41!

| &% |

= 1

Flow Diagram 29. Flowchart of 'INVert operation for
inverting a square matrix.

C FiX)

- CALL SEQUENCE:

BRM FIX
[return location]

ZRO [addr. of location containing row size|
ZRO [addr. of location containing colutmn size]

V

ceplase. OO, { IDiM,~ L}
with row dimension

and Oy Ggimm,-hﬂ
wikn column dimaension AT ENTRY:

{At, {8}, {x} garbage

AT EXIT:

(81610} garbage

Flow Diagram 30. Flowchart of BRM FIX adjusting the
dimensions of the standard output
VARIABLE,

<: COPY

3@! row and
column dimermsions
ond calculate

Aumber of slemerts

:

copy mokrix
element oy elemant
ko new Yos‘\’cions

n S-TABLE

Flow Diagram 3l.

CALL SEQUENCE:

BRM COPY
[Feturn location]

ZRO [addr: of location containing row siz¢]

ZRO [addr. of location containing column size]

ZRO [addr. of location containing old starting INDEX]
ZRO [3ddr: of location containing hew starting INDEX]

»

AT ENTRY:
{A}1B},{X}, garbage

AT EXIT:
(AL {Bl{X}, garbage

Flowchart of BRM COPY copying a
matrix into @ new position in the
S-TABLE.

<: ENTRY 4:)

GRP1

V

unload ond skote
secondary LronsFer

number

BRM LAB

check ARGUMENTS a3
VARIABLE - tyye

GOOD | BAD

l

POP

UNLO

uﬁ\&e&i d;mtﬁs;ons
of ARGUMENT and
sXacrking INDEX in
S-TABLE Srom
ADIM - TABLE

v

calculake and share

numb

v ARGULMENT

er oF c\amenks

)

Secondary YranaFer

1

[2

NEG
\

BRM FiX

adiusts dimensions n

ADIM-TABLE o

sisnxafs §u¥?\.\'.
VARABLE

y

sek tad damunk oF
“tandard au.\:?u.\ :
VARIABLE eqmel ko
ﬁtank‘\‘c. h‘ eatrubvgu—vb'-
Dumunk & ARGUMERT

(7]

branch o
* Eb\'f':.o«yowus’t qrouyp

NUL

N

Set each Qetment
of ARGUMENT o 1800

rava \’1 cow

4

RS\ beandn ke
DIRECTIVE TURBPROCESSAR

Flow Diagram 32. Flowchart of GROUP! operations

NULI, NEGate.

Flow

(ENT_RY)

\

wnlood and skare
secondor
*("Mistf umbar

BRM LAB

VARIABLE - type

theck ARGUMENTS a3

GOOD | BAD

POP UNLO

unloeds ARGUMENT
dimensions and

Storking INDEX
(13t ARGUMENT)

PoP UNLO

s u\anvg
(2nd ARGUMENT)

aperakion
‘EQu’

&Y oranch ko
‘EDAT! companent qreny

BRM Fi1X
adijusk dimeniions n
IDIMTABLE oF standard
eu&r\sk NARVWRLE

A

cadeulake tokal
number «F elemanks
nan ARGUMENT

\/

GRPZI

IF operakion 'ADD), 'Su¥ or'EaW
execuke indicakad spwraion on ARG]"
HENTS demenk by elemank. IS sparking
551" medn § ARGURENTS are
scodar, Xhen tacrtment gvoext oy
one T 1k ARGUMENT S 2] ARGURENT

54‘%:\\ *..
DIRECTWE SUEBPROCEIIAR

Diagram 33. Flowchart of GROUP2 operations ADD.

SuBtract, SKip and EQuate.

<j ENTRYA;>

V

unlood and ztore

3econdary Aeraniter
ha) uum\l.f

BRM LAB

chack RARGUMENTS oS

VARKIABLE — ¥‘?o.

GOOD | BAD

‘/‘/ \°“Qv-n<')ﬂ 5:0

Y

7
POP UNLO

uvnleads ARGUMENT

dimensions ond
starting INDEX
1st Hg@uhENT)

‘EDyT’ “.cm?chﬁ.r\¥ rowyp

POP UNLO

as above

(3nd ARGUMENT)

Y

secon éuu\t XcansTer

1 12 13 SCA
ara)

\
BRM __FIX

adiusk diraansians

in \DIM-TRABLE of
standacd osukpuk
VARABLE

ARGLUMENT
seadar

rows of Ficsk
ARGUMENT equal
Durmbar oF columns,

BRM FiX

adjusks dimensions
in IDIM-TABLE oF
BRM F]X standord aukpuk
VARIABLE
adius®s dlmenzions
__f—" - T -TARVE oF
Tonderd aukypuk
Branch ke =
copy 2lamants a¥ " cev-.?nnom\c NBRIARLE -
ARGUMENT nka ‘\:ﬁm?‘"mﬂ‘ ‘meva\‘mf\\xs reskora
1 L]
makeix shtore W
—erspos"n3 in process

volue of 13t ARG UMENT]
Qm\eu.\o.k!. &\&mtv\¥s hg‘
6 Produck oF 2 ARGUMENTS -

('Q\A\\\ o in canvenbianal %
Bot, pudking resudks
iek o W-TABLE mulbiphy Semanks oF And

BRM CO PY il RRG\.\.HQNT in turn b.,v«»\wq_
co Aemanks in of Lsk ARGUMENT Fhorin
W::R‘BLE m(:§;<> the resulls in Abr stamdord

stovndord sukput VARIARLE
aukpuk VARIABLE BRM cCOoPY

copy eAtimant in
W-TABLE "ako

standard sude vk
/1/ &\—mv\ o ko

VARISBLE
DIRECTIVE

SUBPROCESSOR

Flow Diagram 34. Flowchart of GROUP3 operations

MULtiply, SCAlar multiply and TRAnspose.

K
> .

MO ﬁa,,
;o ‘o ,.W,.Jdkw
IVRABIBYA eI g
K-OL.W ﬁ.*td:s.}d

HogsIOOAABNMS

BALIDANT

~ o weemaq 2 [b

&% SN Qoea

ASUSSIY
BVOBUA Jurad

143 Wdd

w

ao

09| ave

2ty <
Moy A)d.qu -

NI _Wdg

A

Vo1

A

MO ﬂ.A Moy BNTYIBYA
%° wo.ﬁ.sd wryr WP 40
SIMYOA TNy e LM

8

AEBIAUA £°
SULIIED AQ SBGUnL
Wuﬁc,.- Ed/ab 4= Frawnu
B G SRR RS

1P\ US IR

Aouyss3W
douas juwsd

ENNEL]

|

aoo9| ave

gndame bhgory

3100 _Wdg

be

4L e —

ey TN
GLJ(I.UL
“+%viraon
- b.fnwdflJ
oq JSPJQG

RuoRSI S n‘/ﬂﬂo A 4
% >od ../.FJ wedvp

Qe m..m
TSaunyeani weeg

J&ﬁﬂdﬂ@ﬂ. v AT “mua g

AW P WTT 9

“

wE

3

&

TreA U e
Susvyea e sroa gl

abfuqd/d# oy)S.wﬂsﬂ

DU J 'R
LN U m.\ﬂ
QU rbr.jw oAl
Sonzareys e

1

..4.10&.
#.5..-0?5. AL e

3

ADCr.bﬂW dﬂ.ﬂboﬂn
\ Y sescdan gy uy .43&.
S
% RIveuod

sserdde g
o asres Jiyun

Jf.’)»ddv o
R il e

et
Y
oy yndgme

TSR Y iy
L um’v.).!o

=

Lo

nﬂvdb.v.- of ooy

ﬁﬂrbm .Unllcv:. L

v

1¥3 Wdd

2OHSSAV

ey e
an #06&‘}0

pu?
£

ik
Jf.ﬂu FFOD
BRI EIBYD

HOHMNR Joursd

i

BB A-S woag
amoanu nwanv
U Naam

b

F‘—.LMM Jf]deJ.w
#.L.O&d&fdw
P Faviuted yasaa

I
c2<D

x.cﬂ..:. Ll Y
TR

P

0.lS

dnosh #:dco.r‘.cv Jtas,

]

Jnrf.#d/d.# oy
CovL Uy Fdmo

IQUan
 Shid b)-vdbo “w>
gU? vso0}s

AN

avaragos

AR IBY wosy
amquwne gnduy

WNNO! WY d

4

oB oz sv
L‘ﬁfvs-_- JLJ...?G)
ANBABAL-S
KAAN 4n jes

12D

AP
d/o puve wzpw

R N

plele]t

dajsuoay Roeguosas

b

BIRGIBABA “!
SqUBMND Ao IBQlania
‘LO»‘. 4“ .'ﬂd/‘;dfdu

i

FIEY LWy wesl INHYL-S
vy XBAN Swiaaeas
PTUT ANBIWTMONY

45 SUSIsvIWLR spTO N

07NN

d40d

o% “ws F‘L,J

O—— !
o<m_oooo

3dh3 3NEYIBL A
o SAINIWVOIBY }29Y>

gVl Wd8

1

Bl datd Ldu.
-swaa n.deCOddﬁ
2031 PO poOfUN

A

(¥d¥9)

m A¥LN3 U

'2J01S PuUP pvyol ‘tUldd ‘pv3ad

suolped2do $dNOY9 4O +JIPYIMOl4 ‘g Weubeig MOl

1. COMPATIBILITY

AS IT STANDS, MAP language is incompatible with any other
SDS 940 facility. Areas of compatibility can only arise if either
modifications to the structure of the MAP processor are made,

or if special interlinking routines are constructed.

As an example, it is possible by means of such a routine to create
compatible disk files to transfer numerical values of matrices to
MAP. An assembly language routine is given below, which may

be called by a Fortran program to create a disk file usable by MAP.
The routine is merely an adaptation of the 'STOre'! component of
MAP's EXECUTIVE SUBPROCESSOR. The subroutine call is

CALL STORE(A,M, N)

where

A is the matrix to be stored
M is the row dimension

N is the column dimension
The cvoding for the routine is as follows:

$STORE ZRO RTN
STX TX
LDA* 4f4B calculate number of elements
STA T+l in matrix
MUL* 443B
RSH 1
STB T
LDA =MGl
LDB ' =-1 output to teletype FILE NAME
LDX =1
BRS 34
CLA
BRS 18 input filename

19 The operation of this subroutine is not guaranteed.

~137-

cont'd
BRU
LDX
BRS
BRU
STA
LDA
WIO
BRU
LDA
LDB
LDX
BRS
BRU
MGl ASC
MG2 ASC
sl LDA
WIO
LDP
WIO
CBA
WIO
LDA
ADD
STA
CLA
STA
MIN
LDA
CLB
LSH
CAX
ZRO
WIO
CBA
WIO
LDA
SKE
BRU
LDA
BRS
LDX
BRR
LNK LDP
T BSS
TX ZRO
RTN ZRO

%48

=3
19

*45

T+2

=66552B

=1

S1

=MG2

==1

=1

34

STORE+7
I$FILE NAME/!
$EWHAT?$$ /1
=31463146B

T+2

T

T+2

T+2
LNK
4428
*+8

T+3
T+3
T+3

1

T+2

T+2
T+3

S1+11
T+2
2
TX
RTN

open file

come here if file is bad
output to teletype WHAT?

go get a new file

come here if file good,

put on file: identifier,
number of elements, number
of columns

insert element loading in-
struction
beginning of loop

calculate index of element

put element of matrix on file
end of loop
close file

return

storage

If the filename is to be provided by the calling sequence instead of input

from the teletype, the routine would be slightly more complicated.

-138-

It can be seen that the provision of linking routines need not neces-
sarily be too difficult a task. More complex forms of iteration
between MAP and other facilities, such as the aﬁtomatic entry
of MAP for the execution of certain operations, during the course

of execution of some other program, are not feasible.

8. CHANGING THE LIMITS ON STORAGE SPACE

DUE TO THE MANNER in which INDICES are stored in the
WORDS of TABLES, it is in general not possible to enlarge the
TABLES of MAP. As the processor stands at the time of
publication, only the CTAB-TABLE and the ICOM~ and
PLACE-TABLES can be extended. Thus only the number of
COMMENTS and the number of COMMANDS can be increased.
If other machines in which less storage space is available are
used, then either or both the CTAB~ and S-TABLE would be

reduced in size.

It is also possible to increase the maximum permissible dimen-
sions of MAP matrices. This is more difficult, however, and
not recommended on the grounds that the processing of large

matrices on the SDS 940 is uneconomical.
COMMENTS

To change the number of COMMENTS it is only
necessary to redefine the size of the CTAB-TABLE,
and to set {ENDS+3} equal to three times the new
number of WORDS in the TABLE minus 73.

~139-

VARIABLE STORAGE

To decrease the VARIABLE STORAGE space it

is necessary to redefine the length of the S-TABLE.
lLiet the new number of locations be n: n-2 must then
be divisible by 2ff. {ENDS} are set equal to

(n-2)/2 and {ENDS+2} to (n-2)/2 + 8.

NUMBER OF COMMANDS

If it is desired to make available new COMMANDS
the ICOM- and PLACE-TABLES must be extended,
placing the new COMMAND character codes in the
ICOM-TABLE angd their transfer locations in the
PLACE-TABLE . In addition in the BRM 'INPUT/,
the BRM 'LOOK!' used to search the ICOM-TABLE
for the COMMAND input by the user, must have its
call sequence changed. If n COMMANDS are added

then the call sequence should become

BRM LOOK

ZRO =77777777B

ZRO =[insert value of -(3@+n)]
ZRO ICOM

The placing of the sections of coding dealing with
the new COMMANDS is not important, except that
if they make use of user-defined POP's, the coding

must be inserted after the POP definitions.

-140-

APPENDIX Al

THE FOLLOWING IS a list of the BRS's and SYSPOPS used in
the MAP processor. A full list of all available system routines

with descriptions of their operation may be found in [3].

BRS's
15 read input filename
16 open input file
17 close all files
18 read output filename
19 open output file
24 close file
21 floating-point negate
34 output string
36 output number
38 input number
51 fixed to floating conversion
53 output floating-point number
78 arm interrupt
SYSPOPS
FAD floating-point add
FDV floating~point divide
FMP floating~point multiply
FSB floating-point subtract
GCI get character and increment
ISC internal to string conversion (floating-point outputzo)
2

0 In the symbolic listings of the processor program the SYSPOP
'ISC! appears as the SYSPOP 'SIC'. Due to an error in the
Harvard University SDS 940 ARPAS assembler 'ISC' assembles
as 'SIC' and vice-versa. '

-141-

LDP
STP
TCI

TCO
WCI
WIO

load pointers (or floating-point number)
store pointers (or floating-point number)
teletype character input

teletype character output

write character and increment

word input and output

~-142-

APPENDIX A2

THE FOLLOWING IS a list of all messages output by the MAP
processor to the teletype. It includes a list of all ERROR
MESSAGES with their reference numbers.

Error Messages

Reference number message

1 ®®NO MORE STATEMENTS ®®
2 ®®VARIABLE UNDEFINED @®®
3 ®®TOO MANY VARIABLES ®®
4 ®®VARIABLE STORE FULL ®®
5 ®®ILLEGAL VARIABLE A®
6 ®®MATRIX IS OVERSIZE @®®
7 ®®LABEL UNDEFINED ®®
8 ®®INCOMPATIBLE MATRIX ®®
9 ®®WHAT? E®

ot
=

®®COMMENT STORE FULL ®®

Other Messages

MSl @E®MATRIX MANIPULATOR (11§-3) MAY 1968®®

MS2 ®COMPLEX EIGENVALUE

MS3 ®REAL EIGENVALUE

MS4 ®DETERMINANT ZERO®E®
MS5 FILE NAME

MS6 @®®STOP IN STATEMENT

MS7 ®MATRIX SINGULAR - RANK =
MS8 ®COMPUTATION FAILURE ®®

MSlg ®VARIABLES USED®®
MS11 ®REDIMENSION VARIABLES?®®

In the above messages (® denotes a carriage return and line feed.

-143-

COMMAND

ADD
APPend
BRAnch
COMment
DELete
‘DETerminant
DIAgonal sum
EIGenvalue
EQUate
INSert
INVert
LISt
L.OAd
MULtiply
NEGate
NULI1
OMIt
PRInt
PROgram
REAd
REStore
SAVe

SCAlar multiply

SKIp
STOre
SUBtract
TRAnspose
VARiables

INDEX OF COMMANDS

matrix addition
append INDIRECT STATEMENTS

branch to INDIRECT STATEMENT

attach COMMENT

delete INDIRECT STATEMENTS
determinant of a matrix

trace of a matrix

eigenvalues and vectors of a matrix
equate two matrices

insert INDIRECT STATEMENTS
invert a matrix

output VARIABLE LIST to teletype
load matrix from a disk file
matriic multiplication

negate a matrix

set null matrix

omit VARIABLE from LIST
output matrix to teletype

output PROGRAM to teletype
read matrix from teletype

read PROGRAM from disk file
output PROGRAM to disk file
scalar multiplication
conditionally skip a STATEMENT
output matrix to disk file

matrix subtraction

transpose matrix

add to LIST of VARIABLES

-145~-

Page

94
47
50
50
50
71
71
71
94
50
71
45
99
97
93
93
69
929
55
99
60
58
97
94
99
94
97
39

REFERENCES

[1] P. M. Newbold. "M.A.P. - A Conversational Language for
Numerical Matrix Operations. Part I: User's Manual. "
Harvard University Technical Report TR561, May 1968.

[2] B. W. Lampson, L. P. Deutsch, L. L. Barnes. "Floating-
point System Manual. " Contract SD-185, Document No. 30 10 40,
University of California, February 1966.

[3] "SDS 940 Timesharing System Technical Manual. " Scientific
Data Systems Publication 98 11 16A, November 1967.

[4] "SDS 940 Computer Reference Manual. " Scientific Data
Systems Publication 90 06 40B, September 1967.

[5] "TAP Reference Manual for SDS 940 Time-sharing Computer
System. " Scientific Data Systems Publication 90 11 17A,
October 1967.

[6] B. W. Lampson, L. P. Deutsch, L. L. Barnes. "S.P.S.
Timesharing String Process System Reference Manual. "
Contract SD-185, Document No. 30 10 20, March 1966.

[71 W. Jennings. 'First Course in Numerical Methods.' Sections
5.3, 5.4 and 22.5. Macmillan, N. Y. 1964.

-147-

Acsdemy Library [DFSLB}
U. S, Als Forcs Academy
Colorado Springs, Golorado 80912

AEDC (AR
e froney I N—
wnold AFR, Temn, 37389

Aeronautica Library
Graduate Aeronautic:

rnia B)
Pasaduns, Caiorsia 91109

Aerospace Corporation
-0, Box 7504°

Los Angelos, Calif. 90045
Auta: Library Acquisitions Group

Atrborne Instrumentu Laboratory
Deerpark, Now York 11729

AFAL (AVIE/R. D. Larsod)
wrxgm Paterson
ONo 4

AFCRL {CRMXLR)

ARCRL Rexaarch Libracy, Stop 29
L. G. om Field

Bedlord, Mass, 01731

AFETR (ETLIG = 1)
STINFO Officer (far library)
Patrick AFD, Flotida 3765

AFETR Technical Library
(ETV, MU-138)
Patrick AFB, Florida 32926

AFFTC (FRBPP-2)
Techaical Library
Edva

rdu AFB, Calif, 93523

APGC (PHBPS-12)
Eglin

Florida 32562
ARL (

i Paur.on aFB
Ohio 454

AUL3T-9663
Maxwell AFB
Alabama 36112

. Henry L. Bachman
rtant Chief Engineer
Wheeler Laborataries
T Sotaras st
Great Neck, N. Y.

Hozl

Bepdix Pacific Division
11600 Sheiman Way
North Hotlywood, Galif. 91605

Calonel A, D. Blue

RTD (RTTL)

Tolling A

Washington, D. C. 20332
Gatiforain lnstitite of Techaology

tite
Pasadena, California 911
o Botumment Tiveaty

CGarnegie Institute of Technology
Electrical Enginsering Dep.
tteburg, Pa.

Central Intelligence Agency
Atin: OCR/DD Publ uc-uenl
Washington, D. G. 20!

Chief of Naval Cperations
OP-07

Washiagton, .D. G. 20350 [2]

Chief of Naval Ressarch

Wasbington, D. .
¢ Goda'427 (3}

Gommandax:

075 Artmy and Geasral Staff College
Attn: Secretary

Fost Leavenworth, Kanoas 66370

Cos ,

Naval Alx Development and
Material Center

Jobmaville, Pernsylvania 18974

copmanting Geheral

Eroiona

Attm: suurA-Leonv Ds. Sidaey Ross)
1adelpbin, Pa.

Commandant

U, S. Army Alr Defense Scaaol

Abta: Missile Scieaces Div. C aod S Dest.
P. 0. Box

Fort Blias, Tos 19516

Gommande:
T, S, Naval Aiz Missile Test Cente:
Polnt Magu, California 93041

Gominanding Guneral
Attn: STEWS-W5-VT
White Sands Missile Range
New Mexico 88002 (2]

Commanding Geaeral
U. 5. Ammy Electronics Gommand
ort Mowmauth, K. 3. 67703
ey
RD-

Commanding General

u. s4 Arm 'u‘m—m Command
AMCRD-R8-DEE

Walhdnum D.°C. 20318

Commanding Genoral

V. §. Army Miseile Cammand
Attn: Technical Library
Redstone Arsenal, Alabama 35809

Commanding Officar
Naval Avionics Facility
s, Indiana 46241

Commaoding Qificer

U. 5. Army Limited Wax Lavoratory
Attn: Technical Director

‘Abordecn Proving Groy

Abordsen, Maryland 21005

- Commanding Office
s.

S Matemals Research Agency
Watartown Axsenal
Watertown, Massachusetts 02172

Commaning Ottice
Ay Secarity Agency

o
Arlington, Virginia 22212

Gammanding Officer and Director
¥ 5. Navad Undorwater Sqund Lab-
Fort Trumi

New London, tonn. 06840

Defence Documastation Center
Atta:

Cameron Stasion, Bl

Alexandria, Virginia %5 2oy

Det No. .6, OAR {LODAR)
Air Force Unit Post Office
Los Angeles, Calif. 90045

Director

Adianced Rosearch Projects Agency
Depariment of Defon
Weskingion, B. G 20301

Director for Materials Sciences
vanced Research Projects Agency

Department of Defense

Waahington, D. C. 20301

Director
Columbia Radiation Laboratory
Calumbia University
538 Weat 20t Street
Yark, New York 10027

Director

Goordinated Séience Laboratory
University of Dinois

Usbana, Hlinois 61803

Director

tronice Reaearch Labosatory
University of California
Berkeley, ‘California 94720

Director

tranic Sctences Laboratory
University of Southesn California
Los Angeles, California 90007

Director

Microwave Laboratory
fard University

Stanford, Califorata 94305

Director - Inat. for Exploratory
Research
. S. Army Electronics Gommand
Atta: Mr. Rabert O. Parker
Executive Secretary, JSTAC
{AMSEL-XLe!

Foirt: Monzaouth, N..1. 07703

Directs
Hozal Security Agency
Foxt George
Maryland
e Fames . Tippete

Direstor, Naval Regearch Lavoratory
Technical Infozmation Oftic
Waakingtan, D,

e a0 18}

Dizectar
Research Laboratory of Electronics
Massachuaetts Institute of Technology
Gambridge, Mass. 02139

Director
Stanford Electronics. Laboratories
Standord University

Stanford, California 94305

Commanding Offtcer
Haval Oz atory
Corona, California 91720

Commanding Office
Naval Ordnance beo
. Maryiand i (2)

Commanding Officer
Naval Ordnance Test Station
Chira Lake, Calif. 93555

fows 'rnmng Device Genter
Orlands, Florida 32811

ommanding O
Siive ot vamat Rzulech Branch Office
1030 Bast Gresm Stre

Pasadons, California

Commanding Qfficer
Office of Naval Research Branch Office
219 'South Dearbora Street

Ghicago, Dlinois 6060+

Commanding Officer
Office of Naval Research Branch Office
495 Summer Strest

Boston, Massachusetts 02210

GCémmanding Officer
Office of Naval Rescarch Branch Offico
207 West 24th Streer

New York, New York 10011

ing Officer
Office of Naval Research. Branch Office
Box 39, Fleet Poat Office

New York 09510 (2]

Joint Services Electronice Program

NOBO34-67-A~0298-0006, 0605, and 0008

Gommanding Officer

U. S, Army Electronics R'&D Activity
White Sanda Missile Range

New Mexics .aB00:

Coriimanding Officer

U.'S. Anny Engincer R & D' Laboratory
Attn: STINFO Brauch

Fort Belvoir, Virginia 22060

Commanding Officer

U. 5. Army Research Office {Durharm)
Bitn: CRD-AAIP (Richard O. Ulah)
Box CM,

Durham, Nowh Carelina 27706

ommanding General
USASTRATCOM

Technical Information Ceate
Fort Huachuca, Atizona 85613

Gommasing Officer

Harfy Di

ovns! Dr- Besthold Altran (AMXDO-TI)
Comnecticst Ave. & Van Neos St. NW
Wazhington, D. C

Commasding Officer,

an Enginnering Laboratories
Abordeen Froving Ground
Marylaud 21605

Gommanding Office
y Bauuncl Rencarch Lab.

pige-d rd

Khendoen Sroving Ground

Maryland 21005

Director, USAF Project RAND
Via: Air P aiaon Office

The RAID Corporation
1100 biain Sireet

Sarta Monica, Calif. 90406
Ata; Livrary

Disector
V. S. Army Engineer Geodesy,
‘Intelligence and Mapph
Repsarch and Development Agéncy
Fort Belvoir, Virginia 22060

Director
U. S. Naval Observatory
Washington, D. G. 20390

Director, U.’S, Naval Secusity Group
Attn: G43

3801 Nebraska Avenue
Washington, D. C. 20390

Division of Engineering end Applied
Fhysics

130 Per
Harvard Univesaity

Cambridga, Massachusettn 02138

Professor A, A, Dougal, Dixector
Laboratoriea for Electronic

ted Scisaces Research
University of
Austin, Texas 8712

ESD (ESTH

L. G, Hanacom Field
Bedford, Mase. 01731 [2]
European Office of Aerospace.Research
Shell Building
us Cantersteon
Braseate, Bolgium (2]

Golonel Robert E. Fontana

. of Electrical Engineering
Adr Force stitute of Technology
Wright-Pagteraon AFB, Ohio 43433

General Electrtc Company
Reacarch Laboratories
Schenectady, New York 12301

Professor Nicholas Geargs
California Inatitute of Technology
Fasadena, California 91109

Goddard Space Flight Center

National Acronautica and Space Admiin,

Attn: Library, Documenta Section
Code 252

Green Belt, Maryland 20771

Jobn'C, Hancock, Director
Electronic Systeras Reseach Laboratory
Purdue Uniy

Lafayatte, Indiana 47907

Pr. #. Harsison, Code RRE
Driety Electrnphynl:l ranc]
National Acronautics and Spm:e Admin,
Wi Do ey

Head, Technical Division
U. 8 Navai Gountes Latalligence
upport
Fairmont Badlding
036 North Bateaa Drive
Arlington, Virginta 22203

Headquarters
Defenso Cm.mw:mnn. Agency
The

Wllhln.lun, "D. G. 20305

Dr. L. M, Hollinsworth
ARCRL fcan)

nac sla
B=dlord, Massachusetts 01731

Hant Libracy
Garnegie Instimute of Technology
Schensly P:

ask
Pittsburgh, Pa. ‘15213

The Johng Hopkine University
Fpgried Bapeton Laboratary
8621 Georgia Avenue
Sliver Spring, .rymd Zoato
Attn: Boris W.
Becimen: Laveasion

Lt. Col. Robert B. Kalisch
Chief, Flactronics Division
Dixeciorate of Eagincering Scis

r Force Qffice of S¢ientific R:lenxck
Artington, Visgia 22209 (5]

Colonel Kee

ARFSTE

Hax. USAE

Room 1D-429, The Pentagon
Wasbingion, "p.Te: TSl

Dr. S. Benedic Levin, Director
Institute for Exploratory Rescarch

U.'S. Army Electronica Gomm

Foxt Monmauth, New Jerscy 07703

Loy Alamon Scientific Laboratry
Avn: Repastg Library
P03

a- New Mexico 87544

Librarion
U. 8. Navaj Electronics Laboratory
San Diego, California 95152 (2]

Lockbesd Atrcrass Gorp.
. 0. B
Banmvale, Geltforeia 95088

Dr. I R,
AFSC (sCT)
Andrews Air Force Base, Maryland

Lt. Col. Berrard S, Morg:

Frankc]. Seiler Rcuauh Laboratory
V. . Air Force Academ

Citorade ‘Speings, Chlorado 80912

Dr. G. 3, rphy

The Techuslogient Institute
Nosthwestern University
Evanston, flinots 60201

Mr. Peter Murra
Ajr Force Avionica Laborato:
Wrigh-Paiteronn AT, Onia. 45133

NASA Lewis Research Center
Attn: Libza,

21000 Brackpari Road
Cleveland, Ghio 44135

NASA Scieatific & Tockaical
formation Facil
“Attnt Acquumon- Banch {S/AR/DLY
. 0, Box 3

Citluge Pask, Maryiand 20740 (2]

Mational Sefence Foundation

tn: Dr

hemann
Division of Engineering
1800 G Street, NW
Washington, D. G. 20550

National Sacurity Agency
Atta; R4 - Jam:

Fort George C. Meado, Maryland 20755

Naval Air Systems Command

AR 03
Washington, D. C. 20360 [2)

Naval Electronics Systems Command
ELEX 03

Falls Church, Virginia 22046 [2}

Naval Ordnance Syatems.Command

ORD
Washingion, D. €. 20360 [#}

Naval:Ordnance Systems Command

SHIP 0
Washington, D, G. 20360

MNaval Ship Systems Command
SHIP 031

Waghington, D. C. 20360

w York Universicy
Cetiage of Enginouring
New York, New Yozk 10019

Dr. H. V. Noble
Air Force Avianics Laboratosy
Wright-Patterson AFB, Ohio £5433

Office of Deputy Diroctor

(Reegarch and Information Rm. 3D1037)
Department of Defense

The Pentagon

Waghington, D. C. 20301

Polytechalc lagtitate of Brapkiyn
55 Johnson Stre:
Brookiyn, New York 11201
: Mr. Jerome Fox
Renearch Coordination

RAD (EMLAL-})
Griffiss AFB, New York 13442
Attn: Documenta Library

Raytheon Campany.
1730

Bedford, Mas:
Awn: Librarian

Lt Gol, I. L. Reeves
AFSC (SGBB)
‘Androws AirForce Base, Md. 20331

Dr. A, A, D

Ressarch Plane:Otfice

u, 5 Roscarch Office

5345 Cotomtuta Piks
Arlington, Virginia 22204

Dy, _H. Robl, Deputy Chiof Sciantist
. S. Army Regenzch Office (Durham}
Durbiam, North Cavolina 2770

Emil Sehafer, Hoad
s Properties o, Genter
s AvvcranCom
Subles Gy, Cantornia 0230

School of Engineering Sclences
‘Arizona. ity
Tempe, Arizona B/

50 (SMSDL-STINFO}
2 i Bon Oice
Los Angelas, Galiforsia 90045

SSD (SSTRT/Lt. Stasbuck)
AFU

Los Angeles, California 90045
Superintendent

S Aty Military Academy
West Point, New York 10996

1A, Swan

Aezospace Medical Division
{AMRXD)

Brooks AFB, Texas 78235

Syracuss Univorsity
Dept. ‘of Electrical Englaeering
Syracuse, New York 13210

University of Galifor:
Seata Bashav, Caltforala 93106
Ata: Library’

University of Calif. at Las Angeles
Dept, of Englasering
s Angeles, California 90024

University of Michigan
Electrical Engincering Dopt.
‘Arbor, Michigan 48104

Y. §. Army Munitions Command
Artn; Techaical Informatian Branch
Picatinney A»

Dover, New Jer.ey 07801

. §. Army Rescarch Offic:

Altn. Phiysical Seiencen Division
3045 Columbia Pike

Arlingten, Virgita 22204

U.’S. Atomic Energy Commission
Division of Tochnical Information Ext.

a Hiage, Tenn. 37831

Dept. of Electzical Engineering
Texas Techmolagical College
Lubbock, Texas 79409

4.5, Nava) Weypons Laboratory
Dalgren, Virginia

Major-Charles Waespy
Tecknical Division

Deputy for Technology

Space Syatems Division, AFSC
Lios Angeles, California 90045

The Walter Reed Institute of Reearch
Vialter Reed Medical Center
Washington, D, C. 20012

AFSC (SCTR
o Al Torce Base
Mzryhnd 20331

Wespons Systems Test Diviston
Naval Air Test

Patuxtent k.vﬂ, Meryland 20670
Atta; Libra

Wespons Syitems Evalustion Group
Attn: Cob, Ds . MoEiwea

Depasionarnt of Datens
Washington, D. G.

20305

Yale University
Enginsering Departm
F Commocticwt 06720

Mr. Charles F. Yost
Special Asst. to the Director of Research

20546

NASA
Washington, D. G.

Dr. ‘Leo Young
Stanford Rescgrch Instituts
Menlo Pask, Galifornia 54025

Unclassified

Security Classification

DOCUMENT CONTROL DATA-R&D

\Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 2a8. REPORT SECURITY CLASSIFICATION
Division of Engineering and Apphed Physics Unclassified
Harvard University 2b. GROUP
Cambridge, Massachusetts '

3. REPORT TITLE

THE MATRIX ALGEBRA PROGRAM - A CONVERSATIONAL LANGUAGE FOR
NUMERICAL MATRIX OPERATIONS - PART II: REFERENCE MANUAL

4. PESCRIPTIVE NOTES (Type of report and, inclusive dates)

Interim Technical Report

5. AUTHOR(S) (First name, middle initial, last name)

P. M. Newbold

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
June 1968 150 7
8a. CONTRACT OR GRANT NO. . 9a. ORIGINATOR'S REPFORT NUMBERIS)
N00014-67-A-0298-0006 and
b. ProsecT no. NASA NGR 22-007-068 Technical Report No. 562
c. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)
d.

10. DISTRIBUTION STATEMENT
This document has been approved for public
release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

13. ABSTRACT

This report is Part II of a two-part description of a new programming
language MAP. The language is in a conversational mode, created expressly
for direct-access time-sharing computer systems. It is designed to execute
numerical matrix operations with the same ease and flexibility as scalar
operations. No knowledge of any other language is required.

Part II is the Reference Manual for the language.

FORM :
DD 1 NOV 551473 (PAGE 1,) Unclassified

S/N 0101-807-6811 Security Classification

A-31408

Unclassified
Security Classification

14. LiNK A LINK B LINK €
KEY WORDS
ROLE wWT ROLE wWT ROLE WT
Direct-access computer language
Conversational programming language
Numerical matrix operations
FORM - e
DD 1 NOV 651473 (BACK) Unclassified
S/N 0101-8507-6821

Security Classification A-31409

